Abstract

Short fiber–reinforced composites (SFRCs) are high-performance engineering materials for lightweight structural applications in the automotive and electronics industries. Typically, SFRC structures are manufactured by injection molding, which induces heterogeneous microstructures, and the resulting nonlinear anisotropic behaviors are challenging to predict by conventional micromechanical analyses. In this work, we present a machine learning–based multiscale method by integrating injection molding–induced microstructures, material homogenization, and deep material network (DMN) in the finite-element simulation software LS-DYNA for structural analysis of SFRC. DMN is a physics-embedded machine learning model that learns the microscale material morphologies hidden in representative volume elements of composites through offline training. By coupling DMN with finite elements, we have developed a highly accurate and efficient data-driven approach that predicts nonlinear behaviors of composite materials and structures at a computational speed orders of magnitude faster than the high-fidelity direct numerical simulation. To model industrial-scale SFRC products, transfer learning is utilized to generate a unified DMN database, which effectively captures the effects of injection molding–induced fiber orientations and volume fractions on the overall composite properties. Numerical examples are presented to demonstrate the promising performance of this LS-DYNA machine learning–based multiscale method for SFRC modeling.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are proprietary or confidential in nature and may only be provided with restrictions. The training data and trained deep material network models are confidential, and the source code of LS-DYNA is proprietary of Ansys Inc.

Acknowledgments

The authors would like to acknowledge Zeliang Liu, Tianyu Huang, Dandan Lyu, Yong Guo, Kai Wang, and Philip Ho for their great help with the multiscale method development, and we would also like to thank Madhu Keshavamurthy for continuously supporting this research work. The first author is thankful to Xiaolong He for in-depth discussions on machine learning methods. In addition, we sincerely thank the anonymous reviewers for their constructive comments.

References

Advani, S. G., and C. L. Tucker III. 1987. “The use of tensors to describe and predict fiber orientation in short fiber composites.” J. Rheol. 31 (8): 751–784. https://doi.org/10.1122/1.549945.
Baek, J., J. S. Chen, and K. Susuki. 2022. “A neural network-enhanced reproducing kernel particle method for modeling strain localization.” Int. J. Numer. Methods Eng. 123 (18): 4422–4454. https://doi.org/10.1002/nme.7040.
Belytschko, T., W. K. Liu, B. Moran, and K. Elkhodary. 2014. Nonlinear finite elements for continua and structures. New York: Wiley.
Bishara, D., Y. Xie, W. K. Liu, and S. Li. 2022. “A state-of-the-art review on machine learning-based multiscale modeling, simulation, homogenization and design of materials.” In Archives of computational methods in engineering, 1–32. Dordrecht, Netherlands: Springer. https://doi.org/10.1007/s11831-022-09795-8.
Bonatti, C., and D. Mohr. 2022. “On the importance of self-consistency in recurrent neural network models representing elasto-plastic solids.” J. Mech. Phys. Solids 158 (Jan): 104697. https://doi.org/10.1016/j.jmps.2021.104697.
Bostanabad, R., B. Liang, J. Gao, W. K. Liu, J. Cao, D. Zeng, X. Su, H. Xu, Y. Li, and W. Chen. 2018. “Uncertainty quantification in multiscale simulation of woven fiber composites.” Comput. Methods Appl. Mech. Eng. 338 (Aug): 506–532. https://doi.org/10.1016/j.cma.2018.04.024.
Chen, Z., T. Huang, Y. Shao, Y. Li, H. Xu, K. Avery, D. Zeng, W. Chen, and X. Su. 2018. “Multiscale finite element modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructure reconstruction.” Compos. Struct. 188 (Mar): 25–38. https://doi.org/10.1016/j.compstruct.2017.12.039.
Cintra, J. S., Jr., and C. L. Tucker III. 1995. “Orthotropic closure approximations for flow-induced fiber orientation.” J. Rheol. 39 (6): 1095–1122. https://doi.org/10.1122/1.550630.
Eggersmann, R., T. Kirchdoerfer, S. Reese, L. Stainier, and M. Ortiz. 2019. “Model-free data-driven inelasticity.” Comput. Methods Appl. Mech. Eng. 350 (Jun): 81–99. https://doi.org/10.1016/j.cma.2019.02.016.
Eshelby, J. D., and R. E. Peierls. 1957. “The determination of the elastic field of an ellipsoidal inclusion, and related problems.” Proc. R. Soc. London, Ser. A 241 (1226): 376–396. https://doi.org/10.1098/rspa.1957.0133.
Feyel, F. 2003. “A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua.” Comput. Methods Appl. Mech. Eng. 192 (28): 3233–3244. https://doi.org/10.1016/S0045-7825(03)00348-7.
Feyel, F., and J.-L. Chaboche. 2000. “FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials.” Comput. Methods Appl. Mech. Eng. 183 (3): 309–330. https://doi.org/10.1016/S0045-7825(99)00224-8.
Fish, J., G. J. Wagner, and S. Keten. 2021. “Mesoscopic and multiscale modelling in materials.” Nat. Mater. 20 (6): 774–786. https://doi.org/10.1038/s41563-020-00913-0.
Frankel, A. L., R. E. Jones, C. Alleman, and J. A. Templeton. 2019. “Predicting the mechanical response of oligocrystals with deep learning.” Comput. Mater. Sci. 169 (Nov): 109099. https://doi.org/10.1016/j.commatsci.2019.109099.
Fritzen, F., M. Fernández, and F. Larsson. 2019. “On-the-fly adaptivity for nonlinear two-scale simulations using artificial neural networks and reduced order modeling.” Front. Mater. 6 (75). https://doi.org/10.3389/fmats.2019.00075.
Fritzen, F., and O. Kunc. 2018. “Two-stage data-driven homogenization for nonlinear solids using a reduced order model.” Eur. J. Mech. A Solids 69 (May): 201–220. https://doi.org/10.1016/j.euromechsol.2017.11.007.
Gajek, S., M. Schneider, and T. Böhlke. 2020. “On the micromechanics of deep material networks.” J. Mech. Phys. Solids 142 (Sep): 103984. https://doi.org/10.1016/j.jmps.2020.103984.
Gajek, S., M. Schneider, and T. Böhlke. 2021. “An FE–DMN method for the multiscale analysis of short fiber reinforced plastic components.” Comput. Methods Appl. Mech. Eng. 384 (Oct): 113952. https://doi.org/10.1016/j.cma.2021.113952.
Gajek, S., M. Schneider, and T. Böhlke. 2022. “An FE-DMN method for the multiscale analysis of thermomechanical composites.” Comput. Mech. 69 (5): 1087–1113. https://doi.org/10.1007/s00466-021-02131-0.
Gao, J., M. Shakoor, G. Domel, M. Merzkirch, G. Zhou, D. Zeng, X. Su, and W. K. Liu. 2020. “Predictive multiscale modeling for unidirectional carbon fiber reinforced polymers.” Compos. Sci. Technol. 186 (Jan): 107922. https://doi.org/10.1016/j.compscitech.2019.107922.
Ghaboussi, J., J. H. Garrett Jr., and X. Wu. 1991. “Knowledge-based modeling of material behavior with neural networks.” J. Eng. Mech. 117 (1): 132–153. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132).
Ghavamian, F., and A. Simone. 2019. “Accelerating multiscale finite element simulations of history-dependent materials using a recurrent neural network.” Comput. Methods Appl. Mech. Eng. 357 (Jun): 112594. https://doi.org/10.1016/j.cma.2019.112594.
Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep learning. Cambridge, MA: MIT Press.
Goury, O., D. Amsallem, S. P. A. Bordas, W. K. Liu, and P. Kerfriden. 2016. “Automatised selection of load paths to construct reduced-order models in computational damage micromechanics: From dissipation-driven random selection to Bayesian optimization.” Comput. Mech. 58 (2): 213–234. https://doi.org/10.1007/s00466-016-1290-2.
He, Q., and J. S. Chen. 2020. “A physics-constrained data-driven approach based on locally convex reconstruction for noisy database.” Comput. Methods Appl. Mech. Eng. 363 (Jul): 112791. https://doi.org/10.1016/j.cma.2019.112791.
He, Q., D. W. Laurence, C. H. Lee, and J. S. Chen. 2021a. “Manifold learning based data-driven modeling for soft biological tissues.” J. Biomech. 117: 110124. https://doi.org/10.1016/j.jbiomech.2020.110124.
He, X., and J. S. Chen. 2022. “Thermodynamically consistent machine-learned internal state variable approach for data-driven modeling of path-dependent materials.” Comput. Methods Appl. Mech. Eng. 402: 115348. https://doi.org/10.1016/j.cma.2022.115348.
He, X., Q. He, and J. S. Chen. 2021b. “Deep autoencoders for physics-constrained data-driven nonlinear materials modeling.” Comput. Methods Appl. Mech. Eng. 385 (Sep): 114034. https://doi.org/10.1016/j.cma.2021.114034.
He, X., Q. He, J. S. Chen, U. Sinha, and S. Sinha. 2020. “Physics-constrained local convexity data-driven modeling of anisotropic nonlinear elastic solids.” Data-Centric Eng. 1 (5): e19. https://doi.org/10.1017/dce.2020.20.
Hessman, P. A., T. Riedel, F. Welschinger, K. Hornberger, and T. Böhlke. 2019. “Microstructural analysis of short glass fiber reinforced thermoplastics based on x-ray micro-computed tomography.” Compos. Sci. Technol. 183 (Oct): 107752. https://doi.org/10.1016/j.compscitech.2019.107752.
Huang, T., Z. Liu, C. T. Wu, and W. Chen. 2022. “Microstructure-guided deep material network for rapid nonlinear material modeling and uncertainty quantification.” Comput. Methods Appl. Mech. Eng. 398 (Aug): 115197. https://doi.org/10.1016/j.cma.2022.115197.
Huang, T. H., H. Wei, J. S. Chen, and M. C. Hillman. 2020. “RKPM2D: An open-source implementation of nodally integrated reproducing kernel particle method for solving partial differential equations.” Comput. Part. Mech. 7 (2): 393–433. https://doi.org/10.1007/s40571-019-00272-x.
Huang, W., R. Xu, J. Yang, Q. Huang, and H. Hu. 2021. “Data-driven multiscale simulation of FRP based on material twins.” Compos. Struct. 256 (Jan): 113013. https://doi.org/10.1016/j.compstruct.2020.113013.
Huang, Z. M. 2021. “Constitutive relation, deformation, failure and strength of composites reinforced with continuous/short fibers or particles.” Compos. Struct. 262 (Apr): 113279. https://doi.org/10.1016/j.compstruct.2020.113279.
Ibanez, R., E. Abisset-Chavanne, J. V. Aguado, D. Gonzalez, E. Cueto, and F. Chinesta. 2018. “A manifold learning approach to data-driven computational elasticity and inelasticity.” Arch. Comput. Methods Eng. 25 (1): 47–57. https://doi.org/10.1007/s11831-016-9197-9.
Kaneko, S., H. Wei, Q. He, J. S. Chen, and S. Yoshimura. 2021. “A hyper-reduction computational method for accelerated modeling of thermal cycling-induced plastic deformations.” J. Mech. Phys. Solids 151 (Jun): 104385. https://doi.org/10.1016/j.jmps.2021.104385.
Karapiperis, K., L. Stainier, M. Ortiz, and J. E. Andrade. 2020. “Data-driven multiscale modeling in mechanics.” J. Mech. Phys. Solids 147 (Feb): 104239. https://doi.org/10.1016/j.jmps.2020.104239.
Kirchdoerfer, T., and M. Ortiz. 2016. “Data-driven computational mechanics.” Comput. Methods Appl. Mech. Eng. 304 (Jun): 81–101. https://doi.org/10.1016/j.cma.2016.02.001.
Kochmann, J., S. Wulfinghoff, L. Ehle, J. Mayer, B. Svendsen, and S. Reese. 2018. “Efficient and accurate two-scale FE-FFT-based prediction of the effective material behavior of elasto-viscoplastic polycrystals.” Comput. Mech. 61 (6): 751–764. https://doi.org/10.1007/s00466-017-1476-2.
Kouznetsova, V. G., M. G. D. Geers, and W. A. M. Brekelmans. 2004. “Multi-scale second-order computational homogenization of multi-phase materials: A nested finite element solution strategy.” Comput. Methods Appl. Mech. Eng. 193 (48): 5525–5550. https://doi.org/10.1016/j.cma.2003.12.073.
Le, B. A., J. Yvonnet, and Q.-C. He. 2015. “Computational homogenization of nonlinear elastic materials using neural networks.” Int. J. Numer. Methods Eng. 104 (12): 1061–1084. https://doi.org/10.1002/nme.4953.
LeCun, Y., Y. Bengio, and G. Hinton. 2015. “Deep learning.” Nature 521 (7553): 436–444. https://doi.org/10.1038/nature14539.
Li, S., and G. Wang. 2008. Introduction to micromechanics and nanomechanics. Singapore: World Scientific.
Ling, J., R. Jones, and J. Templeton. 2016. “Machine learning strategies for systems with invariance properties.” J. Comput. Phys. 318 (Aug): 22–35. https://doi.org/10.1016/j.jcp.2016.05.003.
Liu, X., S. Tian, F. Tao, and W. Yu. 2021. “A review of artificial neural networks in the constitutive modeling of composite materials.” Composites, Part B 224 (Nov): 109152. https://doi.org/10.1016/j.compositesb.2021.109152.
Liu, Z. 2020. “Deep material network with cohesive layers: Multi-stage training and interfacial failure analysis.” Comput. Methods Appl. Mech. Eng. 363 (May): 112913. https://doi.org/10.1016/j.cma.2020.112913.
Liu, Z. 2021. “Cell division in deep material networks applied to multiscale strain localization modeling.” Comput. Methods Appl. Mech. Eng. 384 (Oct): 113914. https://doi.org/10.1016/j.cma.2021.113914.
Liu, Z., M. A. Bessa, and W. K. Liu. 2016. “Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials.” Comput. Methods Appl. Mech. Eng. 306 (Jul): 319–341. https://doi.org/10.1016/j.cma.2016.04.004.
Liu, Z., M. Fleming, and W. K. Liu. 2018. “Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials.” Comput. Methods Appl. Mech. Eng. 330 (Mar): 547–577. https://doi.org/10.1016/j.cma.2017.11.005.
Liu, Z., H. Wei, T. Huang, and C. T. Wu. 2020. “Intelligent multiscale simulation based on process-guided composite database.” In Proc., 16th Int. LS-DYNA Users Conf. Livermore, CA: Livermore Software Technology. https://doi.org/10.48550/arXiv.2003.09491.
Liu, Z., and C. T. Wu. 2019. “Exploring the 3D architectures of deep material network in data-driven multiscale mechanics.” J. Mech. Phys. Solids 127 (Jun): 20–46. https://doi.org/10.1016/j.jmps.2019.03.004.
Liu, Z., C. T. Wu, and M. Koishi. 2019a. “A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials.” Comput. Methods Appl. Mech. Eng. 345 (Mar): 1138–1168. https://doi.org/10.1016/j.cma.2018.09.020.
Liu, Z., C. T. Wu, and M. Koishi. 2019b. “Transfer learning of deep material network for seamless structure–property predictions.” Comput. Mech. 64 (2): 451–465. https://doi.org/10.1007/s00466-019-01704-4.
Lu, X., D. G. Giovanis, J. Yvonnet, V. Papadopoulos, F. Detrez, and J. Bai. 2019. “A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites.” Comput. Mech. 64 (2): 307–321. https://doi.org/10.1007/s00466-018-1643-0.
Masi, F., I. Stefanou, P. Vannucci, and V. Maffi-Berthier. 2021. “Thermodynamics-based Artificial Neural Networks for constitutive modeling.” J. Mech. Phys. Solids 147 (Feb): 104277. https://doi.org/10.1016/j.jmps.2020.104277.
Mora-Macías, J., J. Ayensa-Jiménez, E. Reina-Romo, M. H. Doweidar, J. Domínguez, M. Doblaré, and J. A. Sanz-Herrera. 2020. “A multiscale data-driven approach for bone tissue biomechanics.” Comput. Methods Appl. Mech. Eng. 368 (Aug): 113136. https://doi.org/10.1016/j.cma.2020.113136.
Mori, T., and K. Tanaka. 1973. “Average stress in matrix and average elastic energy of materials with misfitting inclusions.” Acta Metall. 21 (5): 571–574. https://doi.org/10.1016/0001-6160(73)90064-3.
Mortazavian, S., and A. Fatemi. 2015. “Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites.” Composites, Part B 72 (Aug): 116–129. https://doi.org/10.1016/j.compositesb.2014.11.041.
Müller, V., and T. Böhlke. 2016. “Prediction of effective elastic properties of fiber reinforced composites using fiber orientation tensors.” Compos. Sci. Technol. 130 (Jun): 36–45. https://doi.org/10.1016/j.compscitech.2016.04.009.
Müller, V., M. Kabel, H. Andrä, and T. Böhlke. 2015. “Homogenization of linear elastic properties of short-fiber reinforced composites—A comparison of mean field and voxel-based methods.” Int. J. Solids Struct. 67 (Aug): 56–70. https://doi.org/10.1016/j.ijsolstr.2015.02.030.
Naili, C., I. Doghri, T. Kanit, M. S. Sukiman, A. Aissa-Berraies, and A. Imad. 2020. “Short fiber reinforced composites: Unbiased full-field evaluation of various homogenization methods in elasticity.” Compos. Sci. Technol. 187 (Feb): 107942. https://doi.org/10.1016/j.compscitech.2019.107942.
Nemat-Nasser, S., and M. Hori. 2013. Micromechanics: Overall properties of heterogeneous materials. Amsterdam, Netherlands: Elsevier.
Nguyen, V. D., and L. Noels. 2022a. “Interaction-based material network: A general framework for (porous) microstructured materials.” Comput. Methods Appl. Mech. Eng. 389 (Feb): 114300. https://doi.org/10.1016/j.cma.2021.114300.
Nguyen, V. D., and L. Noels. 2022b. “Micromechanics-based material networks revisited from the interaction viewpoint; robust and efficient implementation for multi-phase composites.” Eur. J. Mech. A Solids 91 (Mar): 104384. https://doi.org/10.1016/j.euromechsol.2021.104384.
Nordmann, J., M. Aßmus, and H. Altenbach. 2018. “Visualising elastic anisotropy: Theoretical background and computational implementation.” Continuum Mech. Thermodyn. 30 (4): 689–708. https://doi.org/10.1007/s00161-018-0635-9.
Pasetto, M., J. Baek, J. S. Chen, H. Wei, J. A. Sherburn, and M. J. Roth. 2021. “A Lagrangian/semi-Lagrangian coupling approach for accelerated meshfree modelling of extreme deformation problems.” Comput. Methods Appl. Mech. Eng. 381 (Aug): 113827. https://doi.org/10.1016/j.cma.2021.113827.
Rao, C., and Y. Liu. 2020. “Three-dimensional convolutional neural network (3D-CNN) for heterogeneous material homogenization.” Comput. Mater. Sci. 184 (Nov): 109850. https://doi.org/10.1016/j.commatsci.2020.109850.
Rocha, I. B. C. M., P. Kerfriden, and F. P. van der Meer. 2020. “Micromechanics-based surrogate models for the response of composites: A critical comparison between a classical mesoscale constitutive model, hyper-reduction and neural networks.” Eur. J. Mech. A Solids 82 (Jul): 103995. https://doi.org/10.1016/j.euromechsol.2020.103995.
Sanz-Herrera, J. A., J. Mora-Macías, J. Ayensa-Jiménez, E. Reina-Romo, M. H. Doweidar, J. Domínguez, and M. Doblaré. 2021. “Data-driven computational simulation in bone mechanics.” Ann. Biomed. Eng. 49 (1): 407–419. https://doi.org/10.1007/s10439-020-02550-9.
Spahn, J., H. Andrä, M. Kabel, and R. Müller. 2014. “A multiscale approach for modeling progressive damage of composite materials using fast Fourier transforms.” Comput. Methods Appl. Mech. Eng. 268 (Aug): 871–883. https://doi.org/10.1016/j.cma.2013.10.017.
Tan, V. B. C., K. Raju, and H. P. Lee. 2020. “Direct FE2 for concurrent multilevel modelling of heterogeneous structures.” Comput. Methods Appl. Mech. Eng. 360 (Mar): 112694. https://doi.org/10.1016/j.cma.2019.112694.
Tao, F., X. Liu, H. Du, and W. Yu. 2022. “Finite element coupled positive definite deep neural networks mechanics system for constitutive modeling of composites.” Comput. Methods Appl. Mech. Eng. 391 (Mar): 114548. https://doi.org/10.1016/j.cma.2021.114548.
Terada, K., J. Kato, N. Hirayama, T. Inugai, and K. Yamamoto. 2013. “A method of two-scale analysis with micro-macro decoupling scheme: Application to hyperelastic composite materials.” Comput. Mech. 52 (5): 1199–1219. https://doi.org/10.1007/s00466-013-0872-5.
Tucker, C. L., III, and E. Liang. 1999. “Stiffness predictions for unidirectional short-fiber composites: Review and evaluation.” Compos. Sci. Technol. 59 (5): 655–671. https://doi.org/10.1016/S0266-3538(98)00120-1.
Vlassis, N. N., R. Ma, and W. Sun. 2020. “Geometric deep learning for computational mechanics Part I: Anisotropic hyperelasticity.” Comput. Methods Appl. Mech. Eng. 371 (Nov): 113299. https://doi.org/10.1016/j.cma.2020.113299.
Vlassis, N. N., and W. Sun. 2021. “Sobolev training of thermodynamic-informed neural networks for interpretable elasto-plasticity models with level set hardening.” Comput. Methods Appl. Mech. Eng. 377 (Apr): 113695. https://doi.org/10.1016/j.cma.2021.113695.
Wang, H. P., C. T. Wu, Y. Guo, and M. E. Botkin. 2009. “A coupled meshfree/finite element method for automotive crashworthiness simulations.” Int. J. Impact Eng. 36 (10–11): 1210–1222. https://doi.org/10.1016/j.ijimpeng.2009.03.004.
Wang, K., and W. Sun. 2018. “A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning.” Comput. Methods Appl. Mech. Eng. 334 (Apr): 337–380. https://doi.org/10.1016/j.cma.2018.01.036.
Wang, M. L., R. Y. Chang, and C. H. D. Hsu. 2018. Molding simulation: Theory and practice. Munich, Germany: Carl Hanser Verlag.
Wei, H., et al. 2021. “Multiscale simulation of short-fiber-reinforced composites: From computational homogenization to mechanistic machine learning in LS-DYNA.” In Proc., 13th European LS-DYNA Conf. Baden-Württemberg, Germany: Dynamore.
Wei, H., D. Lyu, W. Hu, and C. T. Wu. 2022. “RVE analysis in LS-DYNA for high-fidelity multiscale material modeling.” Preprint, submitted October 21, 2022. http://arxiv.org/abs/2210.11761.
Wu, C. T., Y. Wu, D. Lyu, X. Pan, and W. Hu. 2020. “The momentum-consistent smoothed particle Galerkin (MC-SPG) method for simulating the extreme thread forming in the flow drill screw-driving process.” Comput. Part. Mech. 7 (2): 177–191. https://doi.org/10.1007/s40571-019-00235-2.
Wu, L., L. Adam, and L. Noels. 2021. “Micro-mechanics and data-driven based reduced order models for multi-scale analyses of woven composites.” Compos. Struct. 270 (Aug): 114058. https://doi.org/10.1016/j.compstruct.2021.114058.
Xu, K., D. Z. Huang, and E. Darve. 2021. “Learning constitutive relations using symmetric positive definite neural networks.” J. Comput. Phys. 428 (Mar): 110072. https://doi.org/10.1016/j.jcp.2020.110072.
Xu, R., J. Yang, W. Yan, Q. Huang, G. Giunta, S. Belouettar, H. Zahrouni, T. ben Zineb, and H. Hu. 2020. “Data-driven multiscale finite element method: From concurrence to separation.” Comput. Methods Appl. Mech. Eng. 363 (May): 112893. https://doi.org/10.1016/j.cma.2020.112893.
Yu, C., O. L. Kafka, and W. K. Liu. 2019. “Self-consistent clustering analysis for multiscale modeling at finite strains.” Comput. Methods Appl. Mech. Eng. 349 (Jun): 339–359. https://doi.org/10.1016/j.cma.2019.02.027.
Yvonnet, J., and Q. C. He. 2007. “The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains.” J. Comput. Phys. 223 (1): 341–368. https://doi.org/10.1016/j.jcp.2006.09.019.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 149Issue 3March 2023

History

Received: Aug 31, 2022
Accepted: Nov 1, 2022
Published online: Jan 5, 2023
Published in print: Mar 1, 2023
Discussion open until: Jun 5, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Engineer, ANSYS Inc., 7374 Las Positas Rd., Livermore, CA 94551 (corresponding author). ORCID: https://orcid.org/0000-0002-9394-6457. Email: [email protected]
Engineer, ANSYS Inc., 7374 Las Positas Rd., Livermore, CA 94551. Email: [email protected]
Engineer, ANSYS Inc., 7374 Las Positas Rd., Livermore, CA 94551. Email: [email protected]
Tung-Huan Su [email protected]
Engineer, ANSYS Inc., 7374 Las Positas Rd., Livermore, CA 94551. Email: [email protected]
Hitoshi Oura [email protected]
Engineer, JSOL Corporation, Kudan-Kaikan Terrace 1-6-5, Kudanminami, Chiyoda-ku, Tokyo 102-0074, Japan. Email: [email protected]
Masato Nishi [email protected]
Engineer, JSOL Corporation, Kudan-Kaikan Terrace 1-6-5, Kudanminami, Chiyoda-ku, Tokyo 102-0074, Japan. Email: [email protected]
Tadashi Naito [email protected]
Engineer, Honda Motor Co., Ltd., 4630 Shimotakanezawa, Haga-machi, Haga-gun, Tochigi 321-3393, Japan. Email: [email protected]
Engineer, CoreTech System Co., Ltd., 8F-2, No.32, Taiyuan St., Zhubei City, Hsinchu County 302, Taiwan. Email: [email protected]
Engineer, CoreTech System Co., Ltd., 8F-2, No.32, Taiyuan St., Zhubei City, Hsinchu County 302, Taiwan. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share