Research Article
Jun 1979

Estimation of BOD and DO Probability Distribution

Publication: Journal of the Environmental Engineering Division
Volume 105, Issue 3

Abstract

Two parameters generally accepted as the primary indicators of the state of organic pollution of a stream are the biochemical oxygen demand (5-day BOD) and the dissolved oxygen (DO). A random differential equation is presented whose solution is a stochastic process representing the BOD and DO at position t downstream from the source of pollution. Using the solution of the random differential equation and bivariate probability density estimation techniques an estimate of the probability distribution of BOD and DO at position t1 along a stretch of stream is derived based on n observed values of BOD and DO at that point. The estimated distribution is used to obtain the probability distribution of BOD and DO at other points t along the stretch and to obtain probability bounds on the BOD and DO at t. In particular, the probability of DO below a minimum specified level can be computed in order to control the pollution input. A numerical example is given for a typical stream.

Get full access to this article

View all available purchase options and get full access to this article.

Information & Authors

Information

Published In

Journal of the Environmental Engineering Division
Volume 105Issue 3June 1979
Pages: 525 - 533

History

Published in print: Jun 1979
Published online: Feb 11, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

William J. Padgett
Prof. of Statistics and Mathematics; Dept. of Mathematics, Computer Sci., and Statistics, Univ. of South Carolina, Columbia, S.C., USA
A. N. V. Rao
Assoc. Prof. of Mathematics; Dept. of Mathematics, Univ. of South Florida, Tampa, Fla., USA

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share