Technical Papers
Mar 30, 2023

Evaluation of Existing FRP-to-Concrete Bond Strength Models Using Data Envelopment Analysis

Publication: Journal of Composites for Construction
Volume 27, Issue 3

Abstract

Externally bonded reinforcement with fiber-reinforced polymer (FRP) laminates is a popular method for repairing and strengthening reinforced concrete structures. Failure due to premature debonding poses the challenge of accurately estimating the FRP-to-concrete bond capacity. Such a challenge, premature debonding, exhibits the significance of accurately estimating the FRP-to-concrete bond capacity. Therefore, many lap shear tests have been conducted to evaluate the behavior and capacity of FRP-to-concrete bonds. Based on these tests and theoretical studies, numerous bond capacity estimation models have been proposed. These models, however, do not have the same levels of accuracy and performance. In this study, the accuracy and performance of available models for bond capacity are evaluated based on various criteria. For this purpose, 31 bond capacity prediction models were chosen. A database containing 345 test specimens that were used in none of the models was collected. The models were initially scored through the four methods of log-likelihood, Euclidean distance ranking, Bayesian factor, and variance reduction. The final ranking was then determined by applying the results of these methods to a multicriteria decision-making process using the data envelopment analysis technique. The results show that most models ranging from 1st to 10th are the models employed by strengthening provisions or based on fracture mechanics. The models’ coefficient calibration tests have a considerable effect on the ranking results. The effective bond length has a significant impact on the accuracy and score of the models and is the most important parameter.

Get full access to this article

View all available purchase options and get full access to this article.

References

ACI (American Concrete Institute). 2017. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. ACI 440.2R-17. Farmington Hills, MI: ACI.
Adhikary, B. B., and H. Mutsuyoshi. 2001. “Study on the bond between concrete and externally bonded CFRP sheet.” In Vol. 1 of Proc., 5th Int. Conf. on Fibre-Reinforced Plastics for Reinforced Concrete Structures, 371–378. Cambridge, UK: Thomas Telford Publishing.
Adler, N., L. Friedman, and Z. Sinuany-Stern. 2002. “Review of ranking methods in the data envelopment analysis context.” Eur. J. Oper. Res. 140 (2): 249–265. https://doi.org/10.1016/S0377-2217(02)00068-1.
Al-Allaf, M. H., L. Weekes, L. Augusthus-Nelson, and P. Leach. 2016. “An experimental investigation into the bond-slip behaviour between CFRP composite and lightweight concrete.” Constr. Build. Mater. 113: 15–27. https://doi.org/10.1016/j.conbuildmat.2016.03.032.
Aldamak, A., and S. Zolfaghari. 2017. “Review of efficiency ranking methods in data envelopment analysis.” Measurement 106: 161–172. https://doi.org/10.1016/j.radmeas.2016.11.006.
Al-Ghrery, K., R. Kalfat, R. Al-Mahaidi, N. Oukaili, and A. Al-Mosawe. 2021. “Prediction of concrete cover separation in reinforced concrete beams strengthened with FRP.” J. Compos. Constr. 25 (4): 04021022. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001130.
Arefian, B., and D. Mostofinejad. 2021. “Experimental investigation and modeling of FRP–concrete joint bond strength based on failure depth.” J. Compos. Constr. 25 (6): 04021050. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001161.
Arroyo, D., M. Ordaz, and R. Rueda. 2014. “On the selection of ground-motion prediction equations for probabilistic seismic-hazard analysis.” Bull. Seismol. Soc. Am. 104: 1860–1875. https://doi.org/10.1785/0120130264.
Barbieri, G., L. Biolzi, M. Bocciarelli, and S. Cattaneo. 2016. “Size and shape effect in the pull-out of FRP reinforcement from concrete.” Compos. Struct. 143: 395–417. https://doi.org/10.1016/j.compstruct.2016.01.097.
Bilotta, A., F. Ceroni, M. Di Ludovico, E. Nigro, M. Pecce, and G. Manfredi. 2011. “Bond efficiency of EBR and NSM FRP systems for strengthening concrete members.” J. Compos. Constr. 15 (5): 757–772. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000204.
Biolzi, L., C. Ghittoni, R. Fedele, and G. Rosati. 2013. “Experimental and theoretical issues in FRP–concrete bonding.” Constr. Build. Mater. 41: 182–190. https://doi.org/10.1016/j.conbuildmat.2012.11.082.
Bizindavyi, L., and K. W. Neale. 1999. “Transfer lengths and bond strengths for composites bonded to concrete.” J. Compos. Constr. 3 (4): 153–160. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:4(153).
Caggiano, A., and E. Martinelli. 2013. “A fracture-based interface model for simulating the bond behaviour of FRP strips glued to a brittle substrate.” Compos. Struct. 99: 397–403. https://doi.org/10.1016/j.compstruct.2012.12.011.
Camli, U. S., and B. Binici. 2007. “Strength of carbon fiber reinforced polymers bonded to concrete and masonry.” Constr. Build. Mater. 21 (7): 1431–1446. https://doi.org/10.1016/j.conbuildmat.2006.07.003.
Carloni, C. 2014. “Analyzing bond characteristics between composites and quasi-brittle substrates in the repair of bridges and other concrete structures.” In Advanced composites in bridge construction and repair, edited by Y. J. Kim, 61–93. Sawston, UK: Woodhead Publishing.
Carloni, C., T. D’Antino, L. H. Sneed, and C. Pellegrino. 2015. “Role of the matrix layers in the stress-transfer mechanism of FRCM composites bonded to a concrete substrate.” J. Eng. Mech. 141 (6): 04014165.
Carloni, C., T. D’Antino, L. H. Sneed, and C. Pellegrino. 2018. “Three-dimensional numerical modeling of single-lap direct shear tests of FRCM–concrete joints using a cohesive damaged contact approach.” J. Compos. Constr. 22 (1): 04017048. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000827.
Carloni, C., and F. Focacci. 2016. “FRP-masonry interfacial debonding: An energy balance approach to determine the influence of the mortar joints.” Eur. J. Mech. A. Solids 55: 122–133. https://doi.org/10.1016/j.euromechsol.2015.08.003.
Carloni, C., and L. Nobile. 2007. “Shear debonding of FRP from concrete: The influence of FRP sheet width on load carrying capacity.” In Vol. 348 of Key engineering materials, edited by A. A. Nugroho, S. Suwarno, S. Xin, and J. Rajagukguk, 93–96. Bäch, Switzerland: Trans Tech Publications.
Carloni, C., M. Santandrea, and I. A. O. Imohamed. 2017a. “Determination of the interfacial properties of SRP strips bonded to concrete and comparison between single-lap and notched beam tests.” Eng. Fract. Mech. 186: 80–104. https://doi.org/10.1016/j.engfracmech.2017.09.020.
Carloni, C., M. Santandrea, and R. Wendner. 2017b. “An investigation on the ‘width and size effect’ in the evaluation of the fracture energy of concrete.” Procedia Struct. Integrity 3: 450–458. https://doi.org/10.1016/j.prostr.2017.04.065.
Carloni, C., and K. V. Subramaniam. 2010. “Direct determination of cohesive stress transfer during debonding of FRP from concrete.” Compos. Struct. 93 (1): 184–192. https://doi.org/10.1016/j.compstruct.2010.05.024.
Carloni, C., and K. V. Subramaniam. 2012. Application of fracture mechanics to debonding of FRP from RC members. ACI SP-286. Farmington Hills, MI: ACI.
Carloni, C., and K. V. Subramaniam. 2013. “Investigation of sub-critical fatigue crack growth in FRP/concrete cohesive interface using digital image analysis.” Composites, Part B 51: 35–43. https://doi.org/10.1016/j.compositesb.2013.02.015.
Carloni, C., K. V. Subramaniam, M. Savoia, and C. Mazzotti. 2012. “Experimental determination of FRP–concrete cohesive interface properties under fatigue loading.” Compos. Struct. 94 (4): 1288–1296. https://doi.org/10.1016/j.compstruct.2011.10.026.
Carloni, C., S. Verre, L. H. Sneed, and L. Ombres. 2017c. “Loading rate effect on the debonding phenomenon in fiber reinforced cementitious matrix–concrete joints.” Composites, Part B 108: 301–314. https://doi.org/10.1016/j.compositesb.2016.09.087.
Ceroni, F., M. Ianniciello, and M. Pecce. 2016. “Bond behavior of FRP carbon plates externally bonded over steel and concrete elements: Experimental outcomes and numerical investigations.” Composites, Part B 92: 434–446. https://doi.org/10.1016/j.compositesb.2016.02.033.
Ceroni, F., and M. Pecce. 2010. “Evaluation of bond strength in concrete elements externally reinforced with CFRP sheets and anchoring devices.” J. Compos. Constr. 14 (5): 521–530. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000118.
Charnes, A., W. W. Cooper, A. Y. Lewin, and L. M. Seiford, eds. 2013. Data envelopment analysis: Theory, methodology, and applications. New York: Springer.
Chen, C., X. Li, D. Zhao, Z. Huang, L. Sui, F. Xing, and Y. Zhou. 2019. “Mechanism of surface preparation on FRP–concrete bond performance: A quantitative study.” Composites, Part B 163: 193–206. https://doi.org/10.1016/j.compositesb.2018.11.027.
Chen, J. F., and J. G. Teng. 2001. “Anchorage strength models for FRP and steel plates bonded to concrete.” J. Struct. Eng. 127 (7): 784–791. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(784).
CNR (Italian National Research Council). 2013. Guide for the design and construction of externally bonded FRP systems for strengthening existing structures. CNR-DT 200 R1/2013. Rome: CNR.
Colombi, P., G. Fava, and C. Poggi. 2014. “End debonding of CFRP wraps and strips for the strengthening of concrete structures.” Compos. Struct. 111: 510–521. https://doi.org/10.1016/j.compstruct.2014.01.029.
Cooper, W. W., L. M. Seiford, and K. Tone. 2007. Data envelopment analysis: A comprehensive text with models, applications, references and DEA-solver software. New York: Springer.
Correia, L., C. Barris, P. França, and J. Sena-Cruz. 2019. “Effect of temperature on bond behavior of externally bonded FRP laminates with mechanical end anchorage.” J. Compos. Constr. 23 (5): 04019036. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000961.
Dai, J., T. Ueda, and Y. Sato. 2005a. “Development of the nonlinear bond stress–slip model of fiber reinforced plastics sheet–concrete interfaces with a simple method.” J. Compos. Constr. 9 (1): 52–62. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(52).
Dai, J., T. Ueda, and Y. Sato. 2005b. “Unified analytical approaches for determining shear bond characteristics of FRP–concrete interfaces through pullout tests.” J. Adv. Concr. Technol. 4 (1): 133–145. https://doi.org/10.3151/jact.4.133.
Eftekhari, N., A. Yazdani, S. Razmyan, and A. Shamohammadi. 2020. “Data envelopment analysis based procedure for selection and ranking of ground motion prediction equations.” Soil Dyn. Earthquake Eng. 137: 106303. https://doi.org/10.1016/j.soildyn.2020.106303.
Faella, C., E. Martinelli, and E. Nigro. 2009. “Direct versus indirect method for identifying FRP-to-concrete interface relationships.” J. Compos. Constr. 13 (3): 226–233. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:3(226).
fib (International Federation for Structural Concrete). 2019. Externally applied FRP reinforcement for concrete structures. fib Bulletin 90. Lausanne, Switzerland: fib.
Field, C. A., and A. H. Welsh. 2007. “Bootstrapping clustered data.” J. R. Stat. Soc. B 69 (3): 369–390. https://doi.org/10.1111/j.1467-9868.2007.00593.x.
Focacci, F., and C. Carloni. 2015. “Periodic variation of the transferable load at the FRP–masonry interface.” Compos. Struct. 129: 90–100. https://doi.org/10.1016/j.compstruct.2015.03.008.
Ghahsareh, F. M., and D. Mostofinejad. 2021. “Groove classification in EBROG FRP-to-concrete joints.” Constr. Build. Mater. 275: 122169. https://doi.org/10.1016/j.conbuildmat.2020.122169.
Ghorbani, M., D. Mostofinejad, and A. Hosseini. 2017. “Bond behavior of CFRP sheets attached to concrete through EBR and EBROG joints subject to mixed-mode I/II loading.” J. Compos. Constr. 21 (5): 04017034. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000816.
Hadigheh, S. A., R. J. Gravina, and S. Setunge. 2015. “Prediction of the bond-slip law in externally laminated concrete substrates by an analytical based nonlinear approach.” Mater. Des. 66: 217–226. https://doi.org/10.1016/j.matdes.2014.10.061.
Heydari Mofrad, M., D. Mostofinejad, and A. Hosseini. 2019. “A generic non-linear bond-slip model for CFRP composites bonded to concrete substrate using EBR and EBROG techniques.” Compos. Struct. 220: 31–44. https://doi.org/10.1016/j.compstruct.2019.03.063.
Hiroyuki, Y., and Z. Wu. 1997. “Analysis of debonding fracture properties of CFS strengthened RC member subject to tension.” In Vol. 1 of Proc., 3rd Int. Symp. on Non-Metallic (FRP) Reinforcement for Concrete Structures, 287–294. Tokyo: Japan Concrete Institute.
Holzenkampfer, P. 1994. “Ingenieurmodelle des Verbundes geklebter Bewehrung fur Betonbauteile.” Ph.D. thesis, TU Braunschweig.
Hosseini, A., and D. Mostofinejad. 2014. “Effective bond length of FRP-to-concrete adhesively-bonded joints: Experimental evaluation of existing models.” Int. J. Adhes. Adhes. 48: 150–158. https://doi.org/10.1016/j.ijadhadh.2013.09.022.
Izumo, K., N. Saeki, M. Fukao, and T. Horiguchi. 2000. “Bond behavior and strength between fiber sheets and concrete.” Trans. Jpn. Concr. Inst. 21: 423–430.
Jahangir, H., and D. R. Eidgahee. 2021. “A new and robust hybrid artificial bee colony algorithm–ANN model for FRP–concrete bond strength evaluation.” Compos. Struct. 257: 113160. https://doi.org/10.1016/j.compstruct.2020.113160.
JCI (Japan Concrete Institute). 2003. “Technical report of technical committee on retrofit technology.” In Proc., Int. Symp. on the Latest Achievement of Technology and Research on Retrofitting Concrete Structures. Tokyo, Japan: Japan Concrete Institute (JCI).
Kalfat, R., and R. Al-Mahaidi. 2015. “Development of a hybrid anchor to improve the bond performance of multiple plies of FRP laminates bonded to concrete.” Constr. Build. Mater. 94: 280–289. https://doi.org/10.1016/j.conbuildmat.2015.07.013.
Kale, Ö, and S. Akkar. 2013. “A new procedure for selecting and ranking ground-motion prediction equations (GMPEs): The Euclidean distance-based ranking (EDR) method.” Bull. Seismol. Soc. Am. 103 (2A): 1069–1084. https://doi.org/10.1785/0120120134.
Kanakubo, T., T. Furuta, and H. Fukuyama. 2003. “Bond strength between fiber-reinforced polymer laminates and concrete.” In Proc., 6th Int. Symp. on Fibre-Reinforced Polymer Reinforcement for Concrete Structures, 133–142. Singapore: World Scientific Publications.
Khalifa, A., W. J. Gold, A. Nanni, and A. A. Mi. 1998. “Contribution of externally bonded FRP to shear capacity of RC flexural members.” J. Compos. Constr. 2 (4): 195–202. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(195).
Ko, H., S. Matthys, A. Palmieri, and Y. Sato. 2014. “Development of a simplified bond stress–slip model for bonded FRP–concrete interfaces.” Constr. Build. Mater. 68: 142–157. https://doi.org/10.1016/j.conbuildmat.2014.06.037.
Ko, H., and Y. Sato. 2007. “Bond stress–slip relationship between FRP sheet and concrete under cyclic load.” J. Compos. Constr. 11 (4): 419–426. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:4(419).
Kotynia, R. 2019. FRP composites for flexural strengthening of concrete structures theory, testing, design. Łódź, Poland: Wydawnictwo Politechniki Łódzkiej.
Kotynia, R., H. Abdel Baky, K. W. Neale, and U. A. Ebead. 2008. “Flexural strengthening of RC beams with externally bonded CFRP systems: Test results and 3D nonlinear FE analysis.” J. Compos. Constr. 12 (2): 190–201. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:2(190).
Kotynia, R., K. Lasek, and M. Staskiewicz. 2014. “Flexural behavior of preloaded RC slabs strengthened with prestressed CFRP laminates.” J. Compos. Constr. 18 (3): A4013004. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000421.
Li, W., J. Li, X. Ren, C. K. Leung, and F. Xing. 2015. “Coupling effect of concrete strength and bonding length on bond behaviors of fiber reinforced polymer–concrete interface.” J. Reinf. Plast. Compos. 34 (5): 421–432. https://doi.org/10.1177/0731684415573816.
Li, Z., E. del Rey Castillo, R. S. Henry, and A. Thompson. 2022. “Axial behavior of concrete prisms confined by FRP laminate and spike anchors.” J. Compos. Constr. 26 (1): 04021058. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001171.
Lin, J. P., Y. F. Wu, and S. T. Smith. 2017. “Width factor for externally bonded FRP-to-concrete joints.” Constr. Build. Mater. 155: 818–829. https://doi.org/10.1016/j.conbuildmat.2017.08.104.
Lu, X. Z., J. G. Teng, L. P. Ye, and J. J. Jiang. 2005. “Bond–slip models for FRP sheets/plates bonded to concrete.” Eng. Struct. 27 (6): 920–937. https://doi.org/10.1016/j.engstruct.2005.01.014.
Maeda, T., Y. Asano, Y. Sato, T. Ueda, and Y. Kakuta. 1997. “A study on bond mechanism of carbon fiber sheet.” In Vol. 1 of Proc., 3rd Int. Symp. on Non-Metallic (FRP) Reinforcement for Concrete Structures, 279–285. Tokyo, Japan: Japan Concrete Institute (JCI).
Mak, S., R. A. Clements, and D. Schorlemmer. 2017. “Empirical evaluation of hierarchical ground-motion models: Score uncertainty and model weighting.” Bull. Seismol. Soc. Am. 107 (2): 949–965. https://doi.org/10.1785/0120160232.
Mazzotti, C., A. Bilotta, C. Carloni, F. Ceroni, T. D’Antino, E. Nigro, and C. Pellegrino. 2016. “Bond between EBR FRP and concrete.” In Design procedures for the use of composites in strengthening of reinforced concrete structures, edited by C. Pellegrino and J. Sena-Cruz, 39–96. Dordrecht, Netherlands: Springer.
Mazzotti, C., M. Savoia, and B. Ferracuti. 2009. “A new single-shear set-up for stable debonding of FRP–concrete joints.” Constr. Build. Mater. 23 (4): 1529–1537. https://doi.org/10.1016/j.conbuildmat.2008.04.003.
Moghaddas, A., and D. Mostofinejad. 2019. “Empirical FRP–concrete bond strength model for externally bonded reinforcement on grooves.” J. Compos. Constr. 23 (2): 04018080. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000924.
Mohammadi, T., and B. Wan. 2015. “Sensitivity analysis of stress state and bond strength of fiber-reinforced polymer/concrete interface to boundary conditions in single shear pull-out test.” Adv. Mech. Eng. 7 (5): 1–11. https://doi.org/10.1177/1687814015585419.
Monti, G., M. Renzelli, and P. Luciani. 2003. “FRP adhesion in uncracked and cracked concrete zones.” In Proc., 6th Int. Symp. on Fibre-Reinforced Polymer Reinforcement for Concrete Structures, 183–192. Singapore: World Scientific Publications.
Moshiri, N., C. Czaderski, D. Mostofinejad, A. Hosseini, K. Sanginabadi, M. Breveglieri, and M. Motavalli. 2020. “Flexural strengthening of RC slabs with non-prestressed and prestressed CFRP strips using EBROG method.” Composites, Part B 201: 108359. https://doi.org/10.1016/j.compositesb.2020.108359.
Moshiri, N., C. Czaderski, D. Mostofinejad, and M. Motavalli. 2021. “Bond resistance of prestressed CFRP strips attached to concrete by using EBR and EBROG strengthening methods.” Constr. Build. Mater. 266: 121209. https://doi.org/10.1016/j.conbuildmat.2020.121209.
Moshiri, N., A. Tajmir-Riahi, D. Mostofinejad, C. Czaderski, and M. Motavalli. 2019. “Experimental and analytical study on CFRP strips-to-concrete bonded joints using EBROG method.” Composites, Part B 158: 437–447. https://doi.org/10.1016/j.compositesb.2018.09.046.
Mostofinejad, D., and M. Mohammadi. 2020. “Effect of freeze–thaw cycles on FRP–concrete bond strength in EBR and EBROG systems.” J. Compos. Constr. 24 (3): 04020009. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001010.
Mostofinejad, D., K. Sanginabadi, and M. R. Eftekhar. 2019. “Effects of coarse aggregate volume on CFRP–concrete bond strength and behavior.” Constr. Build. Mater. 198: 42–57. https://doi.org/10.1016/j.conbuildmat.2018.11.188.
Nakaba, K., T. Kanakubo, T. Furuta, and H. Yoshizawa. 2001. “Bond behavior between fiber-reinforced polymer laminates and concrete.” ACI Struct. J. 98 (3): 359–367.
Neubauer, U., and F. S. Rostasy. 1997. “Design aspects of concrete structures strengthened with externally bonded CFRP-plates.” In Proc., 7th Int. Conf. on Structural Faults and Repair, 109–118. Edinburgh: ECS Publications.
Niedermeier, R. 1996. Stellungnahme zur richtlinie für das verkleben von betonbau-teilen durch ankleben von stahllaschen-entwurf märz 1996. Schreiben Nr. 1390 vom 30.10.1996 des Lehrstuhls für Massivbau. München, Germany: TU München.
Pan, Y., G. Xian, and M. A. Silva. 2015. “Effects of water immersion on the bond behavior between CFRP plates and concrete substrate.” Constr. Build. Mater. 101: 326–337. https://doi.org/10.1016/j.conbuildmat.2015.10.129.
Pellegrino, C., D. Tinazzi, and C. Modena. 2008. “Experimental study on bond behavior between concrete and FRP reinforcement.” J. Compos. Constr. 12 (2): 180–189. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:2(180).
Pham, H., and R. Al-Mahaidi. 2004. “Experimental investigation into flexural retrofitting of reinforced concrete bridge beams using FRP composites.” Compos. Struct. 66: 617–625. https://doi.org/10.1016/j.compstruct.2004.05.010.
Pham, H. B., and R. Al-Mahaidi. 2006. “Prediction models for debonding failure loads of carbon fibre-reinforced polymer retrofitted reinforced concrete beams.” J. Compos. Constr. 10 (1): 48–59. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:1(48).
Raftery, A. E., D. Madigan, and J. A. Hoeting. 1997. “Bayesian model averaging for linear regression models.” J. Am. Stat. Assoc. 92: 179–191. https://doi.org/10.1080/01621459.1997.10473615.
SA (Standards Australia). 2008. Design handbook for RC structures retrofitted with FRP and metal plates: Beams and slabs. HB 305. Sydney: SA.
Salimian, M. S., and D. Mostofinejad. 2019. “Experimental evaluation of CFRP–concrete bond behavior under high loading rates using particle image velocimetry method.” J. Compos. Constr. 23 (3): 04019010. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000933.
Sanginabadi, K., and D. Mostofinejad. 2021. “Effect of aggregate content on the CFRP–concrete effective bond length: An experimental and analytical study.” Compos. Struct. 269: 114044. https://doi.org/10.1016/j.compstruct.2021.114044.
Sanginabadi, K., A. Yazdani, D. Mostofinejad, and C. Czaderski. 2022. “RC members externally strengthened with FRP composites by grooving methods including EBROG and EBRIG: A state-of-the-art review.” Constr. Build. Mater. 324: 126662. https://doi.org/10.1016/j.conbuildmat.2022.126662.
Santandrea, M., I. A. O. Imohamed, and C. Carloni. 2020. “Width effect in FRP–concrete debonding mechanism: A new formula.” J. Compos. Constr. 24 (4): 04020024. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001001.
Sato, Y., Y. Asano, and T. Ueda. 2000. “Fundamental study on bond mechanism of carbon fiber sheet.” J. Jpn. Soc. Civ. Eng. 47 (648): 71–87.
Scherbaum, F., F. Cotton, and P. Smit. 2004. “On the use of response spectral-reference data for the selection and ranking of ground-motion models for seismic-hazard analysis in regions of moderate seismicity: The case of rock motion.” Bull. Seismol. Soc. Am. 94 (6): 2164–2185. https://doi.org/10.1785/0120030147.
Scherbaum, F., E. Delavaud, and C. Riggelsen. 2009. “Model selection in seismic hazard analysis: An information-theoretic perspective.” Bull. Seismol. Soc. Am. 99 (6): 3234–3247. https://doi.org/10.1785/0120080347.
Seracino, R., M. R. Raizal Saifulnaz, and D. J. Oehlers. 2007. “Generic debonding resistance of EB and NSM plate-to-concrete joints.” J. Compos. Constr. 11 (1): 62–70. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:1(62).
Serbescu, A., M. Guadagnini, and K. Pilakoutas. 2013. “Standardised double-shear test for determining bond of FRP to concrete and corresponding model development.” Composites, Part B 55: 277–297. https://doi.org/10.1016/j.compositesb.2013.06.019.
Shahidzadeh, M. S., A. Yazdani, and S. N. Eftekhari. 2020. “Multivariate Bayesian hypothesis testing for ground motion model selection.” J. Seismolog. 24 (3): 511–529. https://doi.org/10.1007/s10950-020-09924-5.
Shen, D., H. Shi, Y. Ji, and F. Yin. 2015. “Strain rate effect on effective bond length of basalt FRP sheet bonded to concrete.” Constr. Build. Mater. 82: 206–218. https://doi.org/10.1016/j.conbuildmat.2015.02.016.
Smith, S. T., and J. G. Teng. 2003. “Shear-bending interaction in debonding failures of FRP-plated RC beams.” Adv. Struct. Eng. 6 (3): 183–199. https://doi.org/10.1260/136943303322419214.
Sneed, L. H., S. Verre, L. Ombres, and C. Carloni. 2022. “Flexural behavior RC beams strengthened and repaired with SRP composite.” Eng. Struct. 258: 114084. https://doi.org/10.1016/j.engstruct.2022.114084.
Subramaniam, K. V., C. Carloni, and L. Nobile. 2007. “Width effect in the interface fracture during shear debonding of FRP sheets from concrete.” Eng. Fract. Mech. 74 (4): 578–594. https://doi.org/10.1016/j.engfracmech.2006.09.002.
Sun, W., X. Peng, H. Liu, and H. Qi. 2017. “Numerical studies on the entire debonding propagation process of FRP strips externally bonded to the concrete substrate.” Constr. Build. Mater. 149: 218–235. https://doi.org/10.1016/j.conbuildmat.2017.05.117.
Tajmir-Riahi, A., N. Moshiri, C. Czaderski, and D. Mostofinejad. 2019a. “Effect of the EBROG method on strip-to-concrete bond behavior.” Constr. Build. Mater. 220: 701–711. https://doi.org/10.1016/j.conbuildmat.2019.06.065.
Tajmir-Riahi, A., N. Moshiri, and D. Mostofinejad. 2019b. “Inquiry into bond behavior of CFRP sheets to concrete exposed to elevated temperatures–Experimental & analytical evaluation.” Composites, Part B 173: 106897. https://doi.org/10.1016/j.compositesb.2019.05.108.
Tajmir-Riahi, A., N. Moshiri, and D. Mostofinejad. 2019c. “Bond mechanism of EBROG method using a single groove to attach CFRP sheets on concrete.” Constr. Build. Mater. 197: 693–704. https://doi.org/10.1016/j.conbuildmat.2018.11.204.
Tanaka, T. 1996. “Shear resisting mechanism of reinforced concrete beams with CFS as shear reinforcement.” Graduation thesis, Hokkaido Univ.
Täljsten, B. 1996. “Strengthening of concrete prisms using the plate-bonding technique: Nonlinear fracture mechanics derivations applied to plates of steel or carbon fibre, bonded to concrete and loaded in shear.” Int. J. Fract. 82: 253–266. https://doi.org/10.1007/BF00013161.
Tone, K. 2002. “A slacks-based measure of super-efficiency in data envelopment analysis.” Eur. J. Oper. Res. 143 (1): 32–41. https://doi.org/10.1016/S0377-2217(01)00324-1.
Toutanji, H., P. Saxena, L. Zhao, and T. Ooi. 2007. “Prediction of interfacial bond failure of FRP–concrete surface.” J. Compos. Constr. 11 (4): 427–436. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:4(427).
Ueno, S., H. Toutanji, and R. Vuddandam. 2015. “Introduction of a stress state criterion to predict bond strength between FRP and concrete substrate.” J. Compos. Constr. 19 (1): 04014024. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000481.
Ulaga, T., T. Vogel, and U. Meier. 2003. “Bilinear stress–slip bond model: Theoretical background and significance.” In Proc., 6th Int. Symp. on Fibre-Reinforced Polymer Reinforcement for Concrete Structures, 153–162. Singapore: World Scientific Publications.
Van Gemert, D. 1980. “Force transfer in epoxy-bonded steel/concrete joints.” Int. J. Adhes. Adhes. 1 (2): 67–72. https://doi.org/10.1016/0143-7496(80)90060-3.
Wan, B., C. Jiang, and Y. F. Wu. 2018. “Effect of defects in externally bonded FRP reinforced concrete.” Constr. Build. Mater. 172: 63–76. https://doi.org/10.1016/j.conbuildmat.2018.03.217.
Woo, S. K., and Y. Lee. 2010. “Experimental study on interfacial behavior of CFRP-bonded concrete.” KSCE J. Civ. Eng. 14 (3): 385–393. https://doi.org/10.1007/s12205-010-0385-0.
Wu, Y., Z. Zhou, Q. Yang, and W. Chen. 2010. “On shear bond strength of FRP–concrete structures.” Eng. Struct. 32 (3): 897–905. https://doi.org/10.1016/j.engstruct.2009.12.017.
Wu, Y. F., and C. Jiang. 2013. “Quantification of bond–slip relationship for externally bonded FRP-to-concrete joints.” J. Compos. Constr. 17 (5): 673–686. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000375.
Wu, Z., S. M. Islam, and H. Said. 2009. “A three-parameter bond strength model for FRP–concrete interface.” J. Reinf. Plast. Compos. 28 (19): 2309–2323. https://doi.org/10.1177/0731684408091961.
Yang, Y. X., Q. R. Yue, and Y. C. Hu. 2001. “Experimental study on bond performance between carbon fiber sheets and concrete.” [In Chinese]. J. Build. Struct. 3: 36–41.
Yao, J., J. G. Teng, and J. F. Chen. 2005. “Experimental study on FRP-to-concrete bonded joints.” Composites, Part B 36 (2): 99–113. https://doi.org/10.1016/j.compositesb.2004.06.001.
Yazdani, A., S. Razmyan, and H. Baharmast Hossainabadi. 2015. “Approximate incremental dynamic analysis using reduction of ground motion records.” Int. J. Eng. 28 (2): 190–197.
Yazdani, A., K. Sanginabadi, M. S. Shahidzadeh, M. R. Salimi, and A. Shamohammadi. 2021a. “Consideration of data correlation to estimate FRP-to-concrete bond capacity models.” Constr. Build. Mater. 308: 125106. https://doi.org/10.1016/j.conbuildmat.2021.125106.
Yazdani, A., M. S. Shahidzadeh, and T. Takada. 2021b. “Merging data and experts’ knowledge-based weights for ranking GMPEs.” Earthquake Spectra 37 (2): 857–875. https://doi.org/10.1177/8755293020970974.
Yuan, C., W. Chen, T. M. Pham, and H. Hao. 2019a. “Effect of aggregate size on bond behaviour between basalt fibre-reinforced polymer sheets and concrete.” Composites, Part B 158: 459–474. https://doi.org/10.1016/j.compositesb.2018.09.089.
Yuan, C., W. Chen, T. M. Pham, and H. Hao. 2019b. “Bond behaviour between hybrid fiber reinforced polymer sheets and concrete.” Constr. Build. Mater. 210: 93–110. https://doi.org/10.1016/j.conbuildmat.2019.03.082.
Yuan, H., Z. Wu, and H. Yoshizawa. 2001. “Theoretical solutions on interfacial stress transfer of externally bonded steel/composite laminates.” Doboku Gakkai Ronbunshu 2001 (675): 27–39. https://doi.org/10.2208/jscej.2001.675_27.
Zhang, D., X. L. Gu, Q. Q. Yu, H. Huang, B. Wan, and C. Jiang. 2018. “Fully probabilistic analysis of FRP-to-concrete bonded joints considering model uncertainty.” Compos. Struct. 185: 786–806. https://doi.org/10.1016/j.compstruct.2017.11.058.
Zhang, H., and S. T. Smith. 2013. “Fibre-reinforced polymer (FRP)-to-concrete joints anchored with FRP anchors: Tests and experimental trends.” Can. J. Civ. Eng. 40 (11): 1103–1116. https://doi.org/10.1139/cjce-2012-0525.
Zhou, H., D. Fernando, G. Chen, and S. Kitipornchai. 2017. “The quasi-static cyclic behaviour of CFRP-to-concrete bonded joints: An experimental study and a damage plasticity model.” Eng. Struct. 153: 43–56. https://doi.org/10.1016/j.engstruct.2017.10.007.
Zhou, Y., Z. Fan, J. Du, L. Sui, and F. Xing. 2015. “Bond behavior of FRP-to-concrete interface under sulfate attack: An experimental study and modeling of bond degradation.” Constr. Build. Mater. 85: 9–21. https://doi.org/10.1016/j.conbuildmat.2015.03.031.
Zhou, Y., S. Zheng, Z. Huang, L. Sui, and Y. Chen. 2020. “Explicit neural network model for predicting FRP–concrete interfacial bond strength based on a large database.” Compos. Struct. 240: 111998. https://doi.org/10.1016/j.compstruct.2020.111998.
Zhou, Y. W. 2009. “Analytical and experimental study on the strength and ductility of FRP-reinforced high strength concrete beam.” Ph.D. thesis, Dalian Univ. of Technology.
Zhu, H., G. Wu, J. Shi, C. Liu, and X. He. 2014. “Digital image correlation measurement of the bond–slip relationship between fiber-reinforced polymer sheets and concrete substrate.” J. Reinf. Plast. Compos. 33 (17): 1590–1603. https://doi.org/10.1177/0731684414541017.
Zou, X., L. H. Sneed, T. D’Antino, and C. Carloni. 2019. “Analytical bond-slip model for fiber-reinforced cementitious matrix–concrete joints based on strain measurements.” J. Mater. Civ. Eng. 31 (11): 04019247. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002855.

Information & Authors

Information

Published In

Go to Journal of Composites for Construction
Journal of Composites for Construction
Volume 27Issue 3June 2023

History

Received: Aug 5, 2022
Accepted: Jan 18, 2023
Published online: Mar 30, 2023
Published in print: Jun 1, 2023
Discussion open until: Aug 30, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Azad Yazdani [email protected]
Professor, Dept. of Civil Engineering, Univ. of Kurdistan, Sanandaj 66177-15175, Iran (corresponding author). Email: [email protected]
Khaled Sanginabadi
Ph.D. Candidate, Dept. of Civil Engineering, Univ. of Kurdistan, Sanandaj 66177-15175, Iran.
Mohammad-Sadegh Shahidzadeh
Assistant Professor, Dept. of Civil Engineering, Behbahan Khatam Alanbia Univ. of Technology, Behbahan 63616-63973, Iran.
Sanaz Razmyan
Assistant Professor, Dept. of Mathematics, Firoozkooh Branch, Islamic Azad Univ., Firoozkooh 39818-38381, Iran.
Mohammad-Rashid Salimi
Assistant Professor, Dept. of Civil Engineering, Univ. of Kurdistan, Sanandaj 66177-15175, Iran.
Davood Mostofinejad
Professor, Dept. of Civil Engineering, Isfahan Univ. of Technology (IUT), Isfahan 15848-11888, Iran.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share