Technical Papers
Feb 14, 2024

Effect of Different Types of Paint on the Hygrothermal Behavior of Facade-Rendering Mortars in Brazil

Publication: Journal of Architectural Engineering
Volume 30, Issue 2

Abstract

Facade-rendering mortars and their painting layers are constantly exposed to weather and, therefore, influence the hygrothermal behavior of buildings. The characterization and assessment of coating materials is fundamental, seeking adequacy in their selection, especially regarding moisture and temperature. Considering the exposure conditions of the facades, risks of damages, such as mold development, may be avoided by an assertive evaluation and selection among different types of paints. In this context, this paper experimentally determined essential properties related to the hygrothermal behavior of painted mortars and simulated their resulting performance when applied on exposed facades in three Brazilian cities in distinct bioclimatic zones. Hygrothermal simulations were carried out using the software WUFI Pro 6.6. Six different types of paints were studied, among which satin acrylic paint (SAP) led to the lowest water vapor permeability and matte polyvinyl acetate (PVA), silicate (SIL), lime (LP), and hydrated lime with white glue (HLG) paints led to the highest. Matte acrylic paint (MAP), PVA, SIL, LP, and HLG had similar impacts on the vapor transmission of mortar renderings. In the simulations, reference (REF) and LP specimens generally resulted in the highest water contents throughout the year, followed by SIL and HLG. SAP led to the lowest water content and a more homogeneous curve than the other paints. Among the studied cities, Macapá, which has the highest annual normal rainfall sum and mean relative humidity, also had the highest mean total water content values over time, followed by Porto Alegre and Petrolina. In general, no probable mold development is expected. However, caution should be taken when extrapolating the results for climate or construction conditions different than the simulated ones.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors thank the Fraunhofer Institute for Building Physics (IBP) for providing the Student License for the software WUFI Pro 6.6. The authors also acknowledge the support of LAMTAC/NORIE (Laboratório de Materiais e Tecnologia do Ambiente Construído/Núcleo Orientado para a Inovação da Edificação), PPGCI (Programa de Pós-Graduação em Engenharia Civil: Construção e Infraestrutura), and UFRGS (Universidade Federal do Rio Grande do Sul). This work was funded by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), Grant Number 88887.702359/2022-00, and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Grant Number 140795/2021-9.

References

ABNT (Associação Brasileira de Normas Técnicas). 2003a. Cal hidratada para argamassas—Requisitos. NBR 7175. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2003b. Agregados—Determinação da composição granulométrica. NBR NM 248. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2005a. Desempenho térmico de edificações—Parte 3: Zoneamento bioclimático brasileiro e diretrizes construtivas para habitações unifamiliares de interesse social. NBR 15220-3. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2005b. Argamassa para assentamento e revestimento de paredes e tetos—Determinação da resistência à tração na flexão e à compressão. NBR 13279. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2005c. Argamassa para assentamento e revestimento de paredes e tetos—Determinação da densidade de massa aparente no estado endurecido. NBR 13280. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2005d. Argamassa para assentamento e revestimento de paredes e tetos—Determinação da absorção de água por capilaridade e do coeficiente de capilaridade. NBR 15259. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2005e. Desempenho térmico das edificações—Parte 2: Método de cálculo da transmitância térmica, da capacidade térmica, do atraso térmico e do fator solar de elementos e componentes de edificações. NBR 15220-2. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2006. Agregados—Determinação da massa unitária e do volume de vazios. NBR NM 45. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2009a. Agregado miúdo—Determinação da massa específica e massa específica aparente. NBR NM 52. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2009b. Argamassa para assentamento e revestimento de paredes e tetos—Determinação do módulo de elasticidade dinâmico através da propagação de onda ultra-sônica. NBR 15630. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2013a. Revestimento de paredes e tetos de argamassa inorgânicas—Especificação. NBR 13749. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2013b. Edificações habitacionais—Desempenho Parte 1: Requisitos gerais. ABNT NBR 15575-1. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2016. Argamassa para assentamento e revestimento de paredes e tetos—Determinação do índice de consistência. NBR 13276. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2017. Cimento Portland e outros materiais em pó—Determinação da massa específica. NBR 16605. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2021. Edificações habitacionais—Desempenho Parte 4: Requisitos para os sistemas de vedações verticais internas e externas—SVVIE. NBR 15575-4. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2023. Argamassas inorgânicas—Requisitos e métodos de ensaios. Parte 1: Argamassas para revestimento de paredes e tetos. NBR 13281-1. Rio de Janeiro, Brazil: ABNT.
Alvares, C. A., J. L. Stape, P. C. Sentelhas, J. L. de Moraes Gonçalves, and G. Sparovek. 2014. “Köppen’s climate classification map for Brazil.” Meteorol. Zeitschrift. 22 (6): 711–728. https://doi.org/10.1127/0941-2948/2013/0507.
Andrade Neto, J. S., T. A. Santos, S. A. Pinto, C. M. R. Dias, and D. V. Ribeiro. 2021. “Effect of the combined use of carbon nanotubes (CNT) and metakaolin on the properties of cementitious matrices.” Const. Build. Mater. 271: 121903. https://doi.org/10.1016/j.conbuildmat.2020.121903.
ANSI/ASHRAE (American National Standards Institute/American Society of Heating, Refrigerating and Air-Conditioning Engineers). 2016. Criteria for moisture-control design analysis in buildings. ASHRAE 160. Atlanta: ANSI/ASHRAE.
ASTM (American Society for Testing and Materials). 2016a. Standard test method for hygroscopic sorption isotherms of building materials. ASTM C1498. West Conshohocken, PA: ASTM.
ASTM (American Society for Testing and Materials). 2016b. Standard test method for water vapor transmission of materials. ASTM E96/E96M. West Conshohocken, PA: ASTM.
Baltazar, L. G., and A. Morais. 2023. “Assessment of the type of paint on performance of rendering mortars.” Civ. Eng. 4 (2): 454–468. https://doi.org/10.3390/civileng4020026.
Brito, V., and T. D. Gonçalves. 2013. “Artisanal lime coatings and their influence on moisture transport during drying.” In Proc., 3rd Historic Mortars Conf., 1–8. Glasgow, Scotland: University of the West of Scotland.
Buligon, L. B., M. R. Macarthy, L. C. Bernardes, R. K. Leitzke, G. C. Grigoletti, and E. G. Cunha. 2022. “Hygrothermal performance of masonry walls of residential buildings in a humid subtropical climate.” PARC Pesq. Arquit. Constr. 13: e022029. https://doi.org/10.20396/parc.v13i00.8667258.
CEN (European Committee for Standardization). 2004. Methods of test for mortar for masonry—Part 19: Determination of water vapour permeability of hardened rendering and plastering mortars. EN 1015-19:2004. Brussels, Belgium: CEN.
Colinart, T., and P. Glouannec. 2022. “Accuracy of water vapor permeability of building materials reassessed by measuring cup's inner relative humidity.” Build. Environ. 217: 109038. https://doi.org/10.1016/j.buildenv.2022.109038.
de Andrade, D. T., E. Bauer, and J. Souza. 2023. “Hygrothermal simulation applied to degradation modeling of ceramic facades.” J. Perform. Constr. Facil. 37 (1): 04022079. https://doi.org/10.1061/JPCFEV.CFENG-4247.
Delgado, J. M. P. Q., E. Barreira, N. M. M. Ramos, and V. P. de Freitas. 2013. “Introduction.” Hygrothermal numerical simulation tools applied to building physics. Berlin, Germany: Springer.
de Salomão, M. C. 2016. “Estudo da estrutura das argamassas de revestimento e sua influência nas propriedades de transporte de Água.” Ph.D. thesis, Departamento de Engenharia Civil e Ambiental, Univ. of Brasília.
Dornelles, K. A., and M. Roriz. 2007. “Influência das tintas imobiliárias sobre o desempenho térmico e energético de edificações.” In Proc., 10th Congresso Internacional de Tintas. São Paulo, Brazil: ABRAFATI.
Faria, P., T. Santos, and J.-E. Aubert. 2016. “Experimental characterization of an earth eco-efficient plastering mortar.” J. Mater. Civ. Eng. 28 (1): 04015085. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001363.
Feng, C., et al. 2020. “Hygric properties of porous building materials (VI): A round robin campaign.” Build. Environ. 185: 107242. https://doi.org/10.1016/j.buildenv.2020.107242.
Feng, C., H. Janssen, C. Wu, Y. Feng, and Q. Meng. 2013. “Validating various measures to accelerate the static gravimetric sorption isotherm determination.” Build. Environ. 69: 64–71. https://doi.org/10.1016/j.buildenv.2013.08.005.
Gallé, C. 2001. “Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry: A comparative study between oven-, vacuum-, and freeze-drying.” Cem. Concr. Res. 31 (10): 1467–1477. https://doi.org/10.1016/S0008-8846(01)00594-4.
García, O., and K. Malaga. 2012. “Definition of the procedure to determine the suitability and durability of an anti-graffiti product for application on cultural heritage porous materials.” J. Cult. Herit. 13 (1): 77–82. https://doi.org/10.1016/j.culher.2011.07.004.
Gaspar, P. L., and J. de Brito. 2011. “Limit states and service life of cement renders on façades.” J. Mater. Civ. Eng. 23 (10): 1396–1404. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000312.
Gleize, P. J. P., A. Müller, and H. R. Roman. 2003. “Microstructural investigation of a silica fume–cement–lime mortar.” Cem. Concr. Compos. 25 (2): 171–175. https://doi.org/10.1016/S0958-9465(02)00006-9.
Gomes, A. O., and C. M. M. Neves. 2002. “Proposta de método de dosagem racional de argamassas contendo argilominerais.” Ambiente Construído 2 (2): 19–30.
Gonçalves, T. D., L. Pel, and J. D. Rodrigues. 2009. “Influence of paints on drying and salt distribution processes in porous building materials.” Constr. Build. Mater. 23 (5): 1751–1759. https://doi.org/10.1016/j.conbuildmat.2008.08.006.
Griciutė, G., R. Bliūdžius, and R. Norvaišienė. 2013. “The durability test method for External Thermal Insulation Composite System (ETICS) used in cold and wet climate countries.” J. Sustain. Archit. Civ. Eng. 1 (2): 50–56. https://doi.org/10.5755/j01.sace.1.2.2778.
IBGE (Instituto Brasileiro de Geografia e Estatística). 2023. “Cities and states.” Accessed January 13, 2023. https://www.ibge.gov.br/en/cities-and-states.html.
IBP (Fraunhofer Institute for Building Physics). 2023. WUFI pro v6.6 (version 6.6) non commercial. Valley, Germany: IBP.
INMET (Instituto Nacional de Meteorologia). 2018. “Arquivos Climáticos INMET 2018.” LABEEE—Laboratório de Eficiência Energética em Edificações. Accessed July 16, 2020. https://labeee.ufsc.br/pt-br/downloads/arquivos-climaticos/inmet2018.
IPHAN/MONUMENTA (Instituto do Patrimônio Histórico e Artístico Nacional/Programa Monumenta). 2006. Manual Prático—Uso da Cal. Brasília, Brazil: IPHAN.
Jensen, N. F., S. P. Bjarløv, C. Rode, and E. B. Møller. 2020. “Hygrothermal assessment of four insulation systems for interior retrofitting of solid masonry walls through calibrated numerical simulations.” Build. Environ. 180: 107031. https://doi.org/10.1016/j.buildenv.2020.107031.
Korpa, A., and R. Trettin. 2006. “The influence of different drying methods on cement paste microstructures as reflected by gas adsorption: Comparison between freeze–drying (F-drying), D-drying, P-drying and oven-drying methods.” Cem. Concr. Res. 36 (4): 634–649. https://doi.org/10.1016/j.cemconres.2005.11.021.
Künzel, H. 2015. “Criteria defining rain protecting external rendering systems.” Energy Procedia 78: 2524–2529. https://doi.org/10.1016/j.egypro.2015.11.260.
Latif, E., M. Lawrence, A. Shea, and P. Walker. 2015. “Moisture buffer potential of experimental wall assemblies incorporating formulated hemp-lime.” Build. Environ. 93 (2): 199–209. https://doi.org/10.1016/j.buildenv.2015.07.011.
Limousin, G., J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthès, and M. Krimissa. 2007. “Sorption isotherms: A review on physical bases, modeling and measurement.” Appl. Geochem. 22 (2): 249–275. https://doi.org/10.1016/j.apgeochem.2006.09.010.
Linderoth, O., P. Johansson, and L. Wadsö. 2020. “Development of pore structure, moisture sorption and transport properties in fly ash blended cement-based materials.” Constr. Build. Mater. 261: 120007. https://doi.org/10.1016/j.conbuildmat.2020.120007.
Madureira, S., I. Flores-Colen, J. de Brito, and C. Pereira. 2017. “Maintenance planning of facades in current buildings.” Constr. Build. Mater. 147: 790–802. https://doi.org/10.1016/j.conbuildmat.2017.04.195.
Malheiro, R., G. Meira, M. Lima, and N. Perazzo. 2011. “Influence of mortar rendering on chloride penetration into concrete structures.” Cem. Concr. Compos. 33 (2): 233–239. https://doi.org/10.1016/j.cemconcomp.2010.11.003.
McGregor, F., A. Fabbri, J. Ferreira, T. Simões, P. Faria, and J.-C. Morel. 2017. “Procedure to determine the impact of the surface film resistance on the hygric properties of composite clay/fibre plasters.” Mater. Struct. 50: 193. https://doi.org/10.1617/s11527-017-1061-3.
Mehta, P. K., and P. J. M. Monteiro. 2014. “Cimentos hidráulicos.” In CONCRETO. Microestrutura, propriedades e materiais, 2nd ed., edited by N. P. Hasparyk, 215–273. São Paulo: Ibracon.
Nascimento, M. L. M. 2016. “Aplicação da simulação higrotérmica na investigação da degradação de fachadas de edifícios.” M.Sc. thesis, Departamento de Engenharia Civil e Ambiental, Univ. of Brasília.
Parracha, J. L., G. Borsoi, I. Flores-Colen, R. Veiga, L. Nunes, A. Dionísio, M. G. Gomes, and P. Faria. 2021. “Performance parameters of ETICS: Correlating water resistance, bio-susceptibility and surface properties.” Constr. Build. Mater. 272: 121956. https://doi.org/10.1016/j.conbuildmat.2020.121956.
Pereira, C., J. de Brito, and J. D. Silvestre. 2018. “Contribution of humidity to the degradation of façade claddings in current buildings.” Eng. Fail. Anal. 90: 103–115. https://doi.org/10.1016/j.engfailanal.2018.03.028.
Pereira de Oliveira, L. A., and J. P. Castro-Gomes. 2011. “Physical and mechanical behaviour of recycled PET fibre reinforced mortar.” Constr. Build. Mater. 25 (4): 1712–1717. https://doi.org/10.1016/j.conbuildmat.2010.11.044.
Pinto, A. P. F., D. Bernardo, A. Gomes, and B. A. Silva. 2016. “Influence of different paint finishes on the water transport characteristics of rendering mortars for old masonry walls.” In Proc., 4th Historic Mortars Conf. Santorini, Greece: Aristotle University of Thessaloniki.
Posani, M., R. Veiga, and V. P. de Freitas. 2022. “Thermal mortar-based insulation solutions for historic walls: An extensive hygrothermal characterization of materials and systems.” Constr. Build. Mater. 315: 125640. https://doi.org/10.1016/j.conbuildmat.2021.125640.
Quarcioni, V. A., and M. A. Cincotto. 2006. “Optimization of calculation method for determination of composition of hardened mortars of Portland cement and hydrated lime made in laboratory.” Constr. Build. Mater. 20 (10): 1069–1078. https://doi.org/10.1016/j.conbuildmat.2005.02.028.
Ramirez, R., B. Ghiassi, P. Pined, and P. B. Lourenço. 2021. “Experimental characterization of moisture transport in brick masonry with natural hydraulic lime mortar.” Build. Environ. 205: 108256. https://doi.org/10.1016/j.buildenv.2021.108256.
Ramos, N. M. M., J. M. P. Q. Delgado, and V. P. de Freitas. 2010. “Influence of finishing coatings on hygroscopic moisture buffering in building elements.” Constr. Build. Mater. 24 (12): 2590–2597. https://doi.org/10.1016/j.conbuildmat.2010.05.017.
Roriz, M. 2012. Arquivos climáticos de municípios brasileiros. São Carlos, Brazil: Associação Nacional de Tecnologia do Ambiente, Grupo de Trabalho sobre Conforto e Eficiência Energética de Edificações.
Šadauskienė, J., E. Monstvilas, and V. Stankevičius. 2007. “The impact of exterior finish vapour resistance on the moisture state of building walls.” Technol. Econ. Dev. Econ. 13 (1): 73–82. https://doi.org/10.3846/13928619.2007.9637779.
Santos, W. J., R. C. S. S. Alvarenga, L. G. Pedroti, R. C. Silva, A. S. Freire, B. A. Moraes, and C. C. Carvalho. 2018. “Proposta de método de dosagem para argamassas de revestimento com areia artificial de britagem.” Ambiente Construído 18 (1): 225–243. https://doi.org/10.1590/s1678-86212018000100218.
Silva, L., I. Flores-Colen, N. Vieira, A. B. Timmons, and P. Sequeira. 2016. “Durability of ETICS and premixed one-coat renders in natural exposure conditions.” In Vol. 6 of New approaches to building pathology and durability, edited by J. Delgado, 131–158. Singapore: Springer.
Socoloski, R. F., J. D. Bersch, M. Guerra, and A. B. Masuero. 2023. “The influence of temperature and rain moisture in mortar facades obtained through hygrothermal simulation.” Constr. Build. Mater. 370: 130587. https://doi.org/10.1016/j.conbuildmat.2023.130587.
Uemoto, K. L., V. Agopyan, and F. Vittorino. 2001. “Concrete protection using acrylic latex paints: Effect of the pigment content on water permeability.” Mater. Struct. 34: 172–177. https://doi.org/10.1007/BF02480508.
Vololonirina, O., and B. Perrin. 2016. “Inquiries into the measurement of vapour permeability of permeable materials.” Constr. Build. Mater. 102 (1–15): 338–348. https://doi.org/10.1016/j.conbuildmat.2015.10.126.
Zhou, M., X. Li, C. Feng, and H. Janssen. 2022. “Hygric properties of porous building materials (VIII): Influence of reduced air pressure.” Build. Environ. 225: 109680. https://doi.org/10.1016/j.buildenv.2022.109680.
Zhou, X., J. Carmeliet, and D. Derome. 2021. “Assessment of moisture risk of wooden beam embedded in internally insulated masonry walls with 2D and 3D models.” Build. Environ. 193: 107460. https://doi.org/10.1016/j.buildenv.2020.107460.

Information & Authors

Information

Published In

Go to Journal of Architectural Engineering
Journal of Architectural Engineering
Volume 30Issue 2June 2024

History

Received: Apr 4, 2023
Accepted: Nov 16, 2023
Published online: Feb 14, 2024
Published in print: Jun 1, 2024
Discussion open until: Jul 14, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Programa de Pós-Graduação em Engenharia Civil: Construção e Infraestrutura (PPGCI), Núcleo Orientado para a Inovação da Edificação (NORIE), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Osvaldo Aranha, 99, 7th floor, Porto Alegre 90035-190, RS, Brazil (corresponding author). ORCID: https://orcid.org/0000-0001-9287-6170. Email: [email protected]
José da Silva Andrade Neto [email protected]
Programa de Pós-Graduação em Engenharia Civil: Construção e Infraestrutura (PPGCI), Núcleo Orientado para a Inovação da Edificação (NORIE), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Osvaldo Aranha, 99, 7th floor, Porto Alegre 90035-190, RS, Brazil. Email: [email protected]
Thais do Socorro Matos da Silva [email protected]
Programa de Pós-Graduação em Engenharia Civil: Construção e Infraestrutura (PPGCI), Núcleo Orientado para a Inovação da Edificação (NORIE), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Osvaldo Aranha, 99, 7th floor, Porto Alegre 90035-190, RS, Brazil. Email: [email protected]
Angela Borges Masuero [email protected]
Programa de Pós-Graduação em Engenharia Civil: Construção e Infraestrutura (PPGCI), Núcleo Orientado para a Inovação da Edificação (NORIE), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Osvaldo Aranha, 99, 7th floor, Porto Alegre 90035-190, RS, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share