Technical Papers
Jun 2, 2023

Influence of Nongrouted, Grouted, and Grouted with Reinforcement on the Thermal Conductivity Value of Interlocking Compressed-Earth Bricks

Publication: Journal of Architectural Engineering
Volume 29, Issue 3

Abstract

This research aims to investigate the thermal conductivity of interlocking compressed-earth bricks (ICEBs) and the influence of nongrouted, grouted, and grouted with reinforcement on the thermal conductivity value of ICEBs. The centered hot plate approach in a steady-state regime is applied to calculate the thermal conductivity. The results are analyzed, and experiments on full and half bricks reveal that the thermal conductivity values for the ICEB for all conditions range from 0.335 to 0.359 W/m K (whether nongrouted, grouted, or grouted with reinforcement). Nongrouted ICEB has the lowest thermal conductivity value and is the best heat conductor when compared with grouted ICEB and grouted-with-reinforcement ICEB. The thermal conductivity value is the highest when the ICEB is grouted with reinforcement. This demonstrates that the ICEB’s construction conditions (nongrouted, grouted, and grouted with reinforcement) have a significant influence on its thermal conductivity value.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors greatly acknowledge the efforts of Mr. Musari bin Shaffiee from ICEB Trading for supplying ICEB samples and providing full cooperation in making this research a success. His support has greatly contributed to the research conducted.

Notation

The following symbols are used in this paper:
A
surface area (m2);
dT
temperature difference (K);
e
thickness (m);
L
distance between the two isothermal planes (m);
Q
quantity of heat transported through the medium (J/s or W);
R
electrical resistance (Ω);
S
heat exchange surface (m2);
T
temperature (°C or K);
U
voltage (V); and
λ
thermal conductivity (W/m K).

References

Abdullah, A. H., R. Razman, M. S. Noh, and A. Z. Ibn Abd Wahid. 2010. “Thermal and structural properties of compressed earth brick (laterite soil).” In Proc., Int. Postgraduate Conf. on Engineering. Perlis, Malaysia: Centre for Graduate Studies, Univ. Malaysia Perlis (UniMAP).
Abdullah, E. S. R. R., A. K. Mirasa, H. Asrah, and C. H. Lim. 2020. “Review on interlocking compressed earth brick.” IOP Conf. Ser.: Earth Environmental Sci. 476: 012029. https://doi.org/10.1088/1755-1315/476/1/012029.
Adedeji, Y. M. D. 2008. “Interlocking masonry: Panacea for sustainable low-cost housing in Nigeria.” Pakistan J. Social Sci. 5: 744–750.
Adedeji, Y. M. D., J. E. Oti, J. M. Kinuthia, J. Bai, E. Obonyo, J. Exelbirt, and C. H. Lim. 2020. “Engineering properties of unfired clay masonry bricks.” IOP Conf. Ser.: Earth Environ. Sci. 3 (1): 118615. https://doi.org/10.1016/j.conbuildmat.2020.118615.
Ajouguim, S., S. Talibi, C. Djelal-Dantec, H. Hajjou, M. Waqif, M. Stefanidou, and L. Saadi. 2020. “Effect of Alfa fibers on the mechanical and thermal properties of compacted earth bricks.” Mater. Today: Proc. 37: 4049–4057. https://doi.org/10.1016/j.matpr.2020.07.539.
Al-Fakih, A., B. S. Mohammed, F. Nuruddin, and E. Nikbakht. 2018. “Development of interlocking masonry bricks and its’ structural behaviour: A review paper.” IOP Conf. Ser.: Earth Environ. Sci. 140 (1): 012127. https://doi.org/10.1088/1755-1315/140/1/012127.
Ashour, T., A. Korjenic, S. Korjenic, and W. Wu. 2015. “Thermal conductivity of unfired earth bricks reinforced by agricultural wastes with cement and gypsum.” Energy Build. 104: 139–146. https://doi.org/10.1016/j.enbuild.2015.07.016.
Asman, N. S. A., N. Bolong, A. K. Mirasa, H. Asrah, and I. Saad. 2020. “Interlocking compressed earth bricks as low carbon footprint building material.” IOP Conf. Ser.: Earth Environ. Sci. 476 (1): 012086. https://doi.org/10.1088/1755-1315/476/1/012086.
ASTM. 2013. Standard test method for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus. ASTM C177-13. West Conshohocken, PA: ASTM.
Bakar, B. H. A., S. Saari, and N. A. Surip. 2017. “Water absorption characteristic of interlocking compressed earth brick units.” AIP Conf. Proc. 1892: 020018. https://doi.org/10.1063/1.5005649.
Beckett, C., and D. Ciancio. 2012. “Thermal mass and its contribution to thermal comfort in rammed earth structures.” In Proc., 2nd Int. Conf. on Sustainable Built Environment. Perak, Malaysia: Office of Research and Industrial Community and Alumni Networking, Univ. Teknologi MARA (Perak) Malaysia.
Brambilla, A., and T. Jusselme. 2017. “Preventing overheating in offices through thermal inertial properties of compressed earth bricks: A study on a real scale prototype.” Energy Build. 156: 281–292. https://doi.org/10.1016/j.enbuild.2017.09.070.
Bredenoord, J., W. Kokkamhaeng, P. Janbunjong, O. Nualplod, S. Thongnoy, W. Khongwong, and A. Mahakhant. 2019. “Interlocking block masonry (ISSB) for sustainable housing purposes in Thailand, with additional examples from Cambodia and Nepal. Eng. Manage. Res. 8 (2): 42. https://doi.org/10.5539/emr.v8n2p42.
BSI (British Standards Institution). 1986. Code of practice for use of masonry. BS 5628-3:2001. London: BSI.
Deboucha, S., and R. Hashim. 2011. “A review on bricks and stabilized compressed earth blocks.” Sci. Res. Essays 6 (3): 499–506. https://doi.org/10.5897/SRE09.356.
Dondi, M., F. Mazzanti, P. Principi, M. Raimondo, and G. Zanarini. 2004. “Errata for ‘thermal conductivity of clay bricks.’” J. Mater. Civ. Eng. 16 (3): 287. https://doi.org/10.1061/(asce)0899-1561(2004)16:3(287).
Doubi, H. G., A. N. Kouamé, L. K. Konan, M. Tognonvi, and S. Oyetola. 2017. “Thermal conductivity of compressed earth bricks strengthening by shea butter wastes with cement.” Mater. Sci. Appl. 8 (12): 848–858. https://doi.org/10.4236/msa.2017.812062.
DSM (Department of Standards Malaysia). 2017. Malaysian standard for energy efficiency and use of renewable energy for residential buildings—Code of practice. MS 2680:2017. Cyberjaya, Malaysia: DSM.
El Fgaier, F., Z. Lafhaj, E. Antczak, and C. Chapiseau. 2016. “Dynamic thermal performance of three types of unfired earth bricks.” Appl. Therm. Eng. 93: 377–383. https://doi.org/10.1016/j.applthermaleng.2015.09.009.
Fabiani, C., V. L. Castaldo, and A. L. Pisello. 2020. “Thermochromic materials for indoor thermal comfort improvement: Finite difference modeling and validation in a real case-study building.” Appl. Energy 262: 114147. https://doi.org/10.1016/j.apenergy.2019.114147.
Felix, M., and E. Elsamahy. 2017. “The efficiency of using different outer wall construction materials to achieve thermal comfort in various climatic zones.” Energy Procedia 115: 321–331. https://doi.org/10.1016/j.egypro.2017.05.029.
Giuffrida, G., R. Caponetto, and F. Nocera. 2019. “Hydrothermal properties of raw earth materials: A literature review.” Sustainability (Switzerland) 11 (19): 5342. https://doi.org/10.3390/su11195342.
Hai Alami, A. 2013. “Experiments on unfired masonry clay bricks mixed with palm fronds and date pits for thermal insulation applications.” J. Renewable Sustainable Energy 5: 023136. https://doi.org/10.1063/1.4801754.
Hakkoum, S., A. Kriker, and A. Mekhermeche. 2017. “Thermal characteristics of model houses manufactured by date palm fiber reinforced earth bricks in desert regions of Ouargla Algeria.” Energy Procedia 119: 662–669. https://doi.org/10.1016/j.egypro.2017.07.093.
Halid, A., S. Khatijah, A. Bakar, and I. A. Rahman. 2013. “Indoor thermal performance of an office building using conventional brick versus interlocking compressed earth brick (ICEB).” Int. J. Constr. Technol. Manage. 1 (1): 22–27.
Huynh, T. P., T. C. Nguyen, N. D. Do, C. L. Hwang, and L. A. T. Bui. 2019. “Strength and thermal properties of unfired four-hole hollow bricks manufactured from a mixture of cement, low-calcium fly ash and blended fine aggregates.” IOP Conf. Ser.: Mater. Sci. Eng. 625: 012010. https://doi.org/10.1088/1757-899X/625/1/012010.
Laaroussi, N., A. Cherki, M. Garoum, A. Khabbazi, and A. Feiz. 2013. “Thermal properties of a sample prepared using mixtures of clay bricks.” Energy Procedia 42: 337–346. https://doi.org/10.1016/j.egypro.2013.11.034.
Lamrani, M., M. Mansour, N. Laaroussi, and M. Khalfaoui. 2019. “Thermal study of clay bricks reinforced by three ecological materials in south of Morocco.” Energy Procedia 156: 273–277. https://doi.org/10.1016/j.egypro.2018.11.141.
Latha, P. K., Y. Darshana, and V. Venugopal. 2015. “Role of building material in thermal comfort in tropical climates—A review.” J. Build. Eng. 3: 104–113. https://doi.org/10.1016/j.jobe.2015.06.003.
Limami, H., I. Manssouri, K. Cherkaoui, and A. Khaldoun. 2020. “Physicochemical, mechanical and thermal performance of lightweight bricks with recycled date pits waste additives.” J. Build. Eng. 34: 101867. https://doi.org/10.1016/j.jobe.2020.101867.
Luis, F., and B. Paulo. 2014. “Mechanical characterization of dry-stack interlocking compressed earth masonry.” In Proc., Int. Masonry Conf. Braga, Portugal: Univ. of Minho.
Ma, H., Q. Ma, and P. Gaire. 2020. “Development and mechanical evaluation of a new interlocking earth masonry block.” Adv. Struct. Eng. 23 (2): 234–247. https://doi.org/10.1177/1369433219868931.
Muñoz, P., V. Letelier, L. Muñoz, and M. A. Bustamante. 2020. “Adobe bricks reinforced with paper & pulp wastes improving thermal and mechanical properties.” Constr. Build. Mater. 254: 119314. https://doi.org/10.1016/j.conbuildmat.2020.119314.
Oti, J. E., J. M. Kinuthia, and J. Bai. 2009. “Engineering properties of unfired clay masonry bricks.” Eng. Geol. 107 (3–4): 130–139. https://doi.org/10.1016/j.enggeo.2009.05.002.
Oti, J. E., J. M. Kinuthia, and J. Bai. 2010. “Design thermal values for unfired clay bricks.” Mater. Des. 31 (1): 104–112. https://doi.org/10.1016/j.matdes.2009.07.011.
Razman, R. 2012. Thermal Performance of Residential House using ICEB as an alternative wall material. Parit Raja, Malaysia: Univ. Tun Hussein Onn Malaysia.
Riza, F. V., I. A. Rahman, A. Mujahid, and A. Zaidi. 2010. “A brief review of Compressed Stabilized Earth Brick (CSEB).” In–Proc., 2010 Int. Conf. on Science and Social Research, 999–1004. https://doi.org/10.1109/CSSR.2010.5773936.
Saari, S. B. 2019. Effect of non-uniform engineering properties of interlocking compressed earth brick (ICEB) on the structural behaviour of masonry. Gelugor, Malaysia: Univ. Sains Malaysia.
Saari, S., B. H. A. A. Bakar, and N. A. Surip. 2017. “Strength properties of interlocking compressed earth brick units.” AIP Conf. Proc. 1892: 020018. https://doi.org/10.1063/1.5005648.
Saidi, M., A. S. Cherif, B. Zeghmati, and E. Sediki. 2018. “Stabilization effects on the thermal conductivity and sorption behavior of earth bricks.” Constr. Build. Mater. 167: 566–577. https://doi.org/10.1016/j.conbuildmat.2018.02.063.
Sturm, T., L. F. Ramos, and P. B. Lourenço. 2015. “Characterization of dry-stack interlocking compressed earth blocks.” Mater. Struct. 48: 3059–3074. https://doi.org/10.1617/s11527-014-0379-3.
Taylor, P., R. J. Fuller, and M. B. Luther. 2008. “Energy use and thermal comfort in a rammed earth office building.” Energy Build. 40 (5): 793–800. https://doi.org/10.1016/j.enbuild.2007.05.013.
Teixeira, E. R., G. Machado, P. De Adilson, C. Guarnier, J. Fernandes, S. M. Silva, and R. Mateus. 2020. “Mechanical and thermal performance characterisation of compressed earth blocks.” Energies 13 (11): 2978. https://doi.org/10.3390/en13112978.
Tonduba, Y. W., A. K. Mirasa, and H. Asrah. 2020. “The impact of various soil proportions towards the strength of interlocking compressed earth brick.” IOP Conf. Ser.: Earth Environ. Sci. 476 (1): 012027. https://doi.org/10.1088/1755-1315/476/1/012027.
Toure, P. M., V. Sambou, M. Faye, and A. Thiam. 2017. “Mechanical and thermal characterization of stabilized earth bricks.” Energy Procedia 139: 676–681. https://doi.org/10.1016/j.egypro.2017.11.271.
Touré, P. M., V. Sambou, M. Faye, A. Thiam, M. Adj, and D. Azilinon. 2017. “Mechanical and hydrothermal properties of compressed stabilized earth bricks (CSEB).” J. Build. Eng. 13: 266–271. https://doi.org/10.1016/j.jobe.2017.08.012.
Tritt, T. M. 2004. Thermal conductivity: Theory, properties, and applications, edited by T. D. Of, R. P. Evrary, S. Lundqvist, G. D. Mahan, and N. H. March. New York: Kluwer Academic/Plenum Publishers.
Velasco-Aquino, A. A., J. A. Espuna-Mujica, J. F. Perez-Sanchez, C. Zuñiga-Leal, A. Palacio-Perez, and E. J. Suarez-Dominguez. 2020. “Compressed earth block reinforced with coconut fibers and stabilized with aloe vera and lime.” J. Eng. Des. Technol. 19 (3): 795–807. https://doi.org/10.1108/JEDT-02-2020-0055.
Wang, T., Y. Wang, and Q. Wu. 2019. “Experimental study of interlocking compressed earth block masonry under shear-compression composite action.” J. Hunan Univ. Nat. Sci. 46 (9): 62–68. https://doi.org/10.16339/j.cnki.hdxbzkb.2019.09.007.
Zamer, M. M., J. M. Irwan, N. Othman, S. K. Faisal, L. H. Anneza, T. Teddy, and A. F. Alshalif. 2017. “Influence of ureolytic bacteria toward interlocking compressed earth blocks (ICEB) in improving durability of ICEB.” MATEC Web Conf. 103: 01027. https://doi.org/10.1051/matecconf/201710301027.
Zamer, M. M., J. M. Irwan, N. Othman, and F. S. Khalid. 2018. “Improvement of strength and water absorption of interlocking compressed earth bricks (ICEB) with addition of ureolytic bacteria (UB).” Malaysian Constr. Res. J. 4: 152–160.
Zhang, L., A. Gustavsen, B. P. Jelle, L. Yang, T. Gao, and Y. Wang. 2017. “Thermal conductivity of cement stabilized earth blocks.” Constr. Build. Mater. 151: 504–511. https://doi.org/10.1016/j.conbuildmat.2017.06.047.
Zhao, S. B., S. Yang, X. Z. Feng, and M. J. Lu. 2013. “Study on thermal conductivity of reinforced concrete plate.” Appl. Mech. Mater. 438–439: 321–328. https://doi.org/10.4028/www.scientific.net/AMM.438-439.321.

Information & Authors

Information

Published In

Go to Journal of Architectural Engineering
Journal of Architectural Engineering
Volume 29Issue 3September 2023

History

Received: Aug 11, 2022
Accepted: Apr 6, 2023
Published online: Jun 2, 2023
Published in print: Sep 1, 2023
Discussion open until: Nov 2, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

School of Civil Engineering, Engineering Campus, Univ. Sains Malaysia, 14300 Nibong Tebal Pulau Pinang, Malaysia (corresponding author). ORCID: https://orcid.org/0000-0002-0629-8499. Email: [email protected]
B. H. Abu Bakar [email protected]
School of Civil Engineering, Engineering Campus, Univ. Sains Malaysia, 14300 Nibong Tebal Pulau Pinang, Malaysia. Email: [email protected]
School of Aerospace Engineering, Engineering Campus, Univ. Sains Malaysia, 14300 Nibong Tebal Pulau Pinang, Malaysia. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share