Abstract

Biotreatment is an emerging reinforcement technology. Avalanche dynamics has recently been used to analyze the fracture behavior of biotreated specimens under unconfined conditions. However, the avalanche dynamics along with fractures in biotreated specimens under confined conditions have not yet been investigated. In this study, we aimed to determine the basic laws of the avalanche dynamics for biotreated calcareous sand specimens through a series of triaxial compression tests under various confining pressures. We found that the probability density distributions of acoustic emission signal (AES) energy, the AES amplitude, and the AES duration of the biotreated specimens under confined conditions obeyed the damped power law, and the AES waiting-time distribution followed the prediction by the gamma function. However, the confining pressure had no significant influence on the relative magnitude, the aftershock-sequence distribution, the AES energy-versus-amplitude distribution, or the AES amplitude-versus-duration distribution. More importantly, the maximum-likelihood estimation of the AES energy could be used to predict the occurrence of catastrophic damage in the biotreated soils.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article. The videos for the triaxial compression tests and acoustic emission tests, the micro images for the biotreated calcareous sand specimens, the calculations of the avalanche dynamics laws for the biotreated calcareous sand specimens, and the additional data used for validation are available from the corresponding author upon reasonable request.

Acknowledgments

The authors would like to acknowledge the financial support of the National Natural Science Foundation of China (Grant Nos. 52078085, 52178313, and 51922024). We would like to thank Dr. M. Chen for the discussion of the basic statistical laws of avalanche dynamics pertaining to biotreated calcareous sand specimens. We would also like to thank Mr. X. M. Zhang, Mr. H. H. Zhao, Mr. H. Zhao, and Mr. W. J. Fan for their assistance in preparing the biotreated calcareous sand specimens with the bacterial and cement solutions, and for helping to perform the triaxial compression and acoustic emission tests.

References

Al Qabany, A., and K. Soga. 2013. “Effect of chemical treatment used in MICP on engineering properties of cemented soils.” Géotechnique 63 (4): 331–339. https://doi.org/10.1680/geot.SIP13.P.022.
Azadi, M., M. Ghayoomi, N. Shamskia, and H. Kalantari. 2017. “Physical and mechanical properties of reconstructed bio-cemented sand.” Soils Found. 57 (5): 698–706. https://doi.org/10.1016/j.sandf.2017.08.002.
Baek, S.-H., J.-W. Hong, K. Y. Kim, S. Yeom, and T.-H. Kwon. 2019. “X-ray computed microtomography imaging of abiotic carbonate precipitation in porous media from a supersaturated solution: Insights into effect of CO2 mineral trapping on permeability.” Water Resour. Res. 55 (5): 3835–3855. https://doi.org/10.1029/2018wr023578.
Baró, J., Á Corral, X. Illa, A. Planes, E. K. H. Salje, W. Schranz, D. E. Soto-Parra, and E. Vives. 2013. “Statistical similarity between the compression of a porous material and earthquakes.” Phys. Rev. Lett. 110 (8): 088702. https://doi.org/10.1103/PhysRevLett.110.088702.
Båth, M. 1965. “Lateral inhomogeneities of the upper mantle.” Tectonophysics 2 (6): 483–514. https://doi.org/10.1016/0040-1951(65)90003-x.
Bhutange, S. P., and M. V. Latkar. 2020. “Microbially induced calcium carbonate precipitation in construction materials.” J. Mater. Civ. Eng. 32 (5): 03120001. https://doi.org/10.1061/(ASCE)mt.1943-5533.0003141.
Cardoso, R., E. Arbabzadeh, J. T. de Lima, I. Flores-Colen, M. F. C. Pereira, M. Costa e Silva, S. O. D. Duarte, and G. A. Monteiro. 2021. “The influence of stone joints width and roughness on the efficiency of biocementation sealing.” Constr. Build. Mater. 283: 122743. https://doi.org/10.1016/j.conbuildmat.2021.122743.
Cardoso, R., I. Pires, S. O. D. Duarte, and G. A. Monteiro. 2018. “Effects of clay’s chemical interactions on biocementation.” Appl. Clay Sci. 156: 96–103. https://doi.org/10.1016/j.clay.2018.01.035.
Castillo-Villa, P. O., J. Baro, A. Planes, E. K. H. Salje, P. Sellappan, W. M. Kriven, and E. Vives. 2013. “Crackling noise during failure of alumina under compression: The effect of porosity.” J. Phys.: Condens. Matter 25 (29): 292202. https://doi.org/10.1088/0953-8984/25/29/292202.
Chen, Y., X. Ding, D. Fang, J. Sun, and E. K. H. Salje. 2019. “Acoustic emission from porous collapse and moving dislocations in granular Mg-Ho alloys under compression and tension.” Sci. Rep. 9 (1): 1330. https://doi.org/10.1038/s41598-018-37604-5.
Chen, Y., Y. Gao, and H. Guo. 2021. “Bio-improved hydraulic properties of sand treated by soybean urease induced carbonate precipitation and its application. Part 2: Sand-geotextile capillary barrier effect.” Transp. Geotech. 27: 100484. https://doi.org/10.1016/j.trgeo.2020.100484.
Chen, Y., C. Zhang, Z. Zhao, and X. Zhao. 2020. “Shear behavior of artificial and natural granite fractures after heating and water-cooling treatment.” Rock Mech. Rock Eng. 53 (12): 5429–5449. https://doi.org/10.1007/s00603-020-02221-0.
Chen, Y., and Z. Zhao. 2020. “Correlation between shear induced asperity degradation and acoustic emission energy in single granite fracture.” Eng. Fract. Mech. 235: 107184. https://doi.org/10.1016/j.engfracmech.2020.107184.
Cheng, L., N. Afur, and M. A. Shahin. 2021. “Bio-cementation for improving soil thermal conductivity.” Sustainability 13 (18): 10238. https://doi.org/10.3390/su131810238.
Cheng, L., M. A. Shahin, and J. Chu. 2019. “Soil bio-cementation using a new one-phase low-pH injection method.” Acta Geotech. 14 (3): 615–626. https://doi.org/10.1007/s11440-018-0738-2.
Cheng, L., M. A. Shahin, and R. Cord-Ruwisch. 2017. “Surface percolation for soil improvement by biocementation utilizing in situ enriched indigenous aerobic and anaerobic ureolytic soil microorganisms.” Geomicrobiol. J. 34 (6): 546–556. https://doi.org/10.1080/01490451.2016.1232766.
Chu, J., V. Ivanov, V. Stabnikov, and B. Li. 2013. “Microbial method for construction of an aquaculture pond in sand.” Géotechnique 63 (10): 871–875. https://doi.org/10.1680/geot.SIP13.P.007.
Cieplak, M., and M. O. Robbins. 1988. “Dynamical transition in quasistatic fluid invasion in porous media.” Phys. Rev. Lett. 60 (20): 2042–2045. https://doi.org/10.1103/PhysRevLett.60.2042.
Console, R., A. M. Lombardi, M. Murru, and D. Rhoades. 2003. “Båth’s law and the self-similarity of earthquakes.” J. Geophys. Res.: Solid Earth 108 (B2): 2128. https://doi.org/10.1029/2001JB001651.
Cui, M.-J., J.-J. Zheng, R.-J. Zhang, H.-J. Lai, and J. Zhang. 2017. “Influence of cementation level on the strength behaviour of bio-cemented sand.” Acta Geotech. 12 (5): 971–986. https://doi.org/10.1007/s11440-017-0574-9.
Davidsen, J., S. Stanchits, and G. Dresen. 2007. “Scaling and universality in rock fracture.” Phys. Rev. Lett. 98 (12): 125502. https://doi.org/10.1103/PhysRevLett.98.125502.
DeJong, J. T., M. B. Fritzges, and K. Nüsslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36: 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
Feng, K., and B. M. Montoya. 2017. “Quantifying level of microbial-induced cementation for cyclically loaded sand.” J. Geotech. Geoenviron. Eng. 143 (6): 06017005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001682.
Gao, K., H. Lin, M. T. Suleiman, P. Bick, T. Babuska, X. Li, J. Helm, D. G. Brown, and N. Zouari. 2023. “Shear and tensile strength measurements of CaCO3 cemented bonds between glass beads treated by microbially induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 149 (1): 04022117. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002927.
Ham, S.-M., A. Martinez, G. Han, and T.-H. Kwon. 2022. “Grain-scale tensile and shear strengths of glass beads cemented by MICP.” J. Geotech. Geoenviron. Eng. 148 (9): 04022068. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002863.
Helmstetter, A., and D. Sornette. 2003. “Båth’s law derived from the Gutenberg–Richter law and from aftershock properties.” Geophys. Res. Lett. 30 (20): 2069. https://doi.org/10.1029/2003gl018186.
Hoang, T., J. Alleman, B. Cetin, K. Ikuma, and S.-G. Choi. 2019. “Sand and silty-sand soil stabilization using bacterial enzyme–induced calcite precipitation (BEICP).” Can. Geotech. J. 56 (6): 808–822. https://doi.org/10.1139/cgj-2018-0191.
Hong, B. H., K. E. Lee, and J. W. Lee. 2007. “Power law of quiet time distribution in the Korean stock-market.” Physica A 377 (2): 576–582. https://doi.org/10.1016/j.physa.2006.11.076.
Jiang, R., F. Dai, Y. Liu, A. Li, and P. Feng. 2021. “Frequency characteristics of acoustic emissions induced by crack propagation in rock tensile fracture.” Rock Mech. Rock Eng. 54 (4): 2053–2065. https://doi.org/10.1007/s00603-020-02351-5.
Jiang, X., D. Jiang, J. Chen, and E. K. H. Salje. 2016. “Collapsing minerals: Crackling noise of sandstone and coal, and the predictability of mining accidents.” Am. Mineral. 101 (12): 2751–2758. https://doi.org/10.2138/am-2016-5809CCBY.
Konstantinou, C., G. Biscontin, N.-J. Jiang, and K. Soga. 2021. “Application of microbially induced carbonate precipitation to form bio-cemented artificial sandstone.” J. Rock Mech. Geotech. Eng. 13 (3): 579–592. https://doi.org/10.1016/j.jrmge.2021.01.010.
Lai, H.-J., M.-J. Cui, and J. Chu. 2023. “Stress-dilatancy behavior of biocementation-enhanced geogrid-reinforced sand.” Int. J. Geomech. 23 (5): 04023043. https://doi.org/10.1061/IJGNAI.GMENG-8252.
Lee, M., M. G. Gomez, M. El Kortbawi, and K. Ziotopoulou. 2022. “Effect of light biocementation on the liquefaction triggering and post-triggering behavior of loose sands.” J. Geotech. Geoenviron. Eng. 148 (1): 04021170. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002707.
Liu, B., Y.-H. Xie, C.-S. Tang, X.-H. Pan, N.-J. Jiang, D. N. Singh, Y.-J. Cheng, and B. Shi. 2021. “Bio-mediated method for improving surface erosion resistance of clayey soils.” Eng. Geol. 293: 106295. https://doi.org/10.1016/j.enggeo.2021.106295.
Liu, Y., Y. Gao, J. He, Y. Zhou, and W. Geng. 2023. “An experimental investigation of wind erosion resistance of desert sand cemented by soybean-urease induced carbonate precipitation.” Geoderma 429: 116231. https://doi.org/10.1016/j.geoderma.2022.116231.
Ma, G., X. He, X. Jiang, H. Liu, J. Chu, and Y. Xiao. 2021. “Strength and permeability of bentonite-assisted biocemented coarse sand.” Can. Geotech. J. 58 (7): 969–981. https://doi.org/10.1139/cgj-2020-0045.
Ma, G., X. He, Y. Xiao, J. Chu, L. Cheng, and H. Liu. 2022. “Influence of bacterial suspension type on the strength of biocemented sand.” Can. Geotech. J. 59 (11): 2014–2021. https://doi.org/10.1139/cgj-2021-0295.
Mahawish, A., A. Bouazza, and W. P. Gates. 2018. “Effect of particle size distribution on the bio-cementation of coarse aggregates.” Acta Geotech. 13 (4): 1019–1025. https://doi.org/10.1007/s11440-017-0604-7.
Mahawish, A., A. Bouazza, and W. P. Gates. 2019. “Unconfined compressive strength and visualization of the microstructure of coarse sand subjected to different biocementation levels.” J. Geotech. Geoenviron. Eng. 145 (8): 04019033. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002066.
Mishnaevsky, L. L. 1997. “Methods of the theory of complex systems in modelling of fracture: A brief review.” Eng. Fract. Mech. 56 (1): 47–56. https://doi.org/10.1016/s0013-7944(96)00110-5.
Montoya, B. M., J. T. DeJong, and R. W. Boulanger. 2013. “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation.” Géotechnique 63 (4): 302–312. https://doi.org/10.1680/geot.SIP13.P.019.
Montoya, B. M., J. Do, and M. A. Gabr. 2021. “Distribution and properties of microbially induced carbonate precipitation in underwater sand bed.” J. Geotech. Geoenviron. Eng. 147 (10): 04021098. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002607.
Montoya, B. M., S. Safavizadeh, and M. A. Gabr. 2019. “Enhancement of coal ash compressibility parameters using microbial-induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 145 (5): 04019018. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002036.
Mujah, D., M. A. Shahin, and L. Cheng. 2017. “State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization.” Geomicrobiol. J. 34 (6): 524–537. https://doi.org/10.1080/01490451.2016.1225866.
Naeimi, M., J. Chu, M. Khosroshahi, and L. Kashi Zenouzi. 2023. “Soil stabilization for dunes fixation using microbially induced calcium carbonate precipitation.” Geoderma 429: 116183. https://doi.org/10.1016/j.geoderma.2022.116183.
Nafisi, A., B. M. Montoya, and T. M. Evans. 2020. “Shear strength envelopes of biocemented sands with varying particle size and cementation level.” J. Geotech. Geoenviron. Eng. 146 (3): 04020002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002201.
Nataf, G. F., P. O. Castillo-Villa, J. Baro, X. Illa, E. Vives, A. Planes, and E. K. Salje. 2014a. “Avalanches in compressed porous SiO2-based materials.” Phys. Rev. E 90 (2): 022405. https://doi.org/10.1103/PhysRevE.90.022405.
Nataf, G. F., P. O. Castillo-Villa, P. Sellappan, W. M. Kriven, E. Vives, A. Planes, and E. K. Salje. 2014b. “Predicting failure: Acoustic emission of berlinite under compression.” J. Phys.: Condens. Matter 26 (27): 275401. https://doi.org/10.1088/0953-8984/26/27/275401.
Oliveira, P. J. V., L. D. Freitas, and J. P. S. F. Carmona. 2017. “Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement.” J. Mater. Civ. Eng. 29 (4): 04016263. https://doi.org/10.1061/(ASCE)mt.1943-5533.0001804.
Omori, F. 1894. “On the after-shocks of earthquakes.” J. Coll. Sci. 7: 111–200.
Pan, X., J. Chu, Y. Yang, and L. Cheng. 2020. “A new biogrouting method for fine to coarse sand.” Acta Geotech. 15 (1): 1–16. https://doi.org/10.1007/s11440-019-00872-0.
Riveros, G. A., and A. Sadrekarimi. 2020. “Liquefaction resistance of Fraser River sand improved by a microbially-induced cementation.” Soil Dyn. Earthquake Eng. 131: 106034. https://doi.org/10.1016/j.soildyn.2020.106034.
Safavizadeh, S., B. M. Montoya, and M. A. Gabr. 2019. “Microbial induced calcium carbonate precipitation in coal ash.” Géotechnique 69 (8): 727–740. https://doi.org/10.1680/jgeot.18.P.062.
Salje, E. K. H., and K. A. Dahmen. 2014. “Crackling noise in disordered materials.” Annu. Rev. Condens. Matter Phys. 5 (1): 233–254. https://doi.org/10.1146/annurev-conmatphys-031113-133838.
Salje, E. K. H., and X. Jiang. 2021. “Crackling noise and avalanches in minerals.” Phys. Chem. Miner. 48 (5): 22. https://doi.org/10.1007/s00269-021-01138-6.
Salje, E. K. H., X. Jiang, J. Eckstein, and L. Wang. 2021. “Acoustic emission spectroscopy: Applications in geomaterials and related materials.” Appl. Sci. 11 (19): 8801. https://doi.org/10.3390/app11198801.
Salje, E. K. H., A. Planes, and E. Vives. 2017. “Analysis of crackling noise using the maximum-likelihood method: Power-law mixing and exponential damping.” Phys. Rev. E 96 (4): 042122. https://doi.org/10.1103/PhysRevE.96.042122.
Sasaki, T., and R. Kuwano. 2016. “Undrained cyclic triaxial testing on sand with non-plastic fines content cemented with microbially induced CaCO3.” Soils Found. 56 (3): 485–495. https://doi.org/10.1016/j.sandf.2016.04.014.
Sethna, J. P., et al. 2017. “Deformation of crystals: Connections with statistical physics.” Annu. Rev. Mater. Res. 47: 217–246. https://doi.org/10.1146/annurev-matsci-070115-032036.
Sethna, J. P., K. A. Dahmen, and C. R. Myers. 2001. “Crackling noise.” Nature 410 (6825): 242–250. https://doi.org/10.1038/35065675.
Shang, D., Y. Chen, Z. Zhao, S. Shangguan, and X. Qi. 2021. “Mechanical behavior and acoustic emission characteristics of intact granite undergoing direct shear.” Eng. Fract. Mech. 245: 107581. https://doi.org/10.1016/j.engfracmech.2021.107581.
Shi, J., H. Li, Y. Xiao, J. Hu, W. Haegeman, and H. Liu. 2023a. “Small strain stiffness of graded sands with light biocementation.” Acta Geotech. 18: 5273–5284. https://doi.org/10.1007/s11440-023-01886-5.
Shi, J., Y. Xiao, J. A. H. Carraro, H. Li, H. Liu, and J. Chu. 2023b. “Anisotropic small-strain stiffness of lightly biocemented sand considering grain morphology.” Géotechnique. https://doi.org/10.1680/jgeot.22.00350.
Song, C., D. Elsworth, Y. Jia, and J. Lin. 2022a. “Permeable rock matrix sealed with microbially-induced calcium carbonate precipitation: Evolutions of mechanical behaviors and associated microstructure.” Eng. Geol. 304: 106697. https://doi.org/10.1016/j.enggeo.2022.106697.
Song, C., C. Wang, D. Elsworth, and S. Zhi. 2022b. “Compressive strength of MICP-treated silica sand with different particle morphologies and gradings.” Geomicrobiol. J. 39 (2): 148–154. https://doi.org/10.1080/01490451.2021.2020936.
Soon, N. W., L. M. Lee, T. C. Khun, and H. S. Ling. 2014. “Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 140 (5): 04014006. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001089.
Tang, J.-H., X.-D. Chen, and F. Dai. 2020. “Experimental study on the crack propagation and acoustic emission characteristics of notched rock beams under post-peak cyclic loading.” Eng. Fract. Mech. 226: 106890. https://doi.org/10.1016/j.engfracmech.2020.106890.
Terzis, D., R. Bernier-Latmani, and L. Laloui. 2016. “Fabric characteristics and mechanical response of bio-improved sand to various treatment conditions.” Géotechnique Lett. 6 (1): 50–57. https://doi.org/10.1680/jgele.15.00134.
Tewari, S., D. Schiemann, D. J. Durian, C. M. Knobler, S. A. Langer, and A. J. Liu. 1999. “Statistics of shear-induced rearrangements in a two-dimensional model foam.” Phys. Rev. E 60 (4): 4385–4396. https://doi.org/10.1103/PhysRevE.60.4385.
Utsu, T., Y. Ogata, and R. S. Matsuura. 1995. “The centenary of the Omori formula for a decay law of aftershock activity.” J. Phys. Earth 43 (1): 1–33. https://doi.org/10.4294/jpe1952.43.1.
Vorontsov, V. B., and V. K. Pershin. 2020. “Correlation between acoustic emission and the local structural restructuring in the nonequilibrium aluminum melt.” Russ. Metall. 2020 (2): 92–101. https://doi.org/10.1134/s0036029520020160.
Wang, L. 2022. “Study on the multi-scale fracture mechanism of biotreated calcareous sand based on avalanche dynamics.” Ph.D. thesis, School of Civil Engineering, Chongqing Univ.
Wang, L., X. Jiang, X. He, J. Chu, Y. Xiao, H. Liu, and E. K. H. Salje. 2021. “Crackling noise and bio-cementation.” Eng. Fract. Mech. 247: 107675. https://doi.org/10.1016/j.engfracmech.2021.107675.
Wang, X., J. Tao, R. Bao, T. Tran, and S. Tucker-Kulesza. 2018. “Surficial soil stabilization against water-induced erosion using polymer-modified microbially induced carbonate precipitation.” J. Mater. Civ. Eng. 30 (10): 04018267. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002490.
Wang, Z., J. Zhang, Q. Li, N. Zhang, and W. Feng. 2022. “A theoretical thermal conductivity model for soils treated with microbially induced calcite precipitation (MICP).” Int. J. Heat Mass Transfer 183: 122091. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122091.
Wu, H., W. Wu, W. Liang, F. Dai, H. Liu, and Y. Xiao. 2023. “3D DEM modeling of biocemented sand with fines as cementing agents.” Int. J. Numer. Anal. Methods Geomech. 47: 212–240. https://doi.org/10.1002/nag.3466.
Wu, K., B. Chen, and W. Yao. 2000. “Study on the AE characteristics of fracture process of mortar, concrete and steel-fiber-reinforced concrete beams.” Cem. Concr. Res. 30 (9): 1495–1500. https://doi.org/10.1016/s0008-8846(00)00358-6.
Xiao, P., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019a. “Effect of relative density and biocementation on cyclic response of calcareous sand.” Can. Geotech. J. 56 (12): 1849–1862. https://doi.org/10.1139/cgj-2018-0573.
Xiao, P., H. Liu, Y. Xiao, A. W. Stuedlein, and T. M. Evans. 2018. “Liquefaction resistance of bio-cemented calcareous sand.” Soil Dyn. Earthquake Eng. 107: 9–19. https://doi.org/10.1016/j.soildyn.2018.01.008.
Xiao, Y., B. Cao, J. Shi, H. Wu, X. He, C. Zhao, J. Chu, and H. Liu. 2023a. “State-of-the-art review on the application of microfluidics in biogeotechnology.” Transp. Geotech. 41: 101030. https://doi.org/10.1016/j.trgeo.2023.101030.
Xiao, Y., H. Chen, A. W. Stuedlein, T. M. Evans, J. Chu, L. Cheng, N. Jiang, H. Lin, H. Liu, and H. M. Aboel-Naga. 2020. “Restraint of particle breakage by biotreatment method.” J. Geotech. Geoenviron. Eng. 146 (11): 04020123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
Xiao, Y., X. He, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019b. “Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand.” J. Geotech. Geoenviron. Eng. 145 (9): 04019048. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002108.
Xiao, Y., X. He, A. W. Stuedlein, J. Chu, T. Matthew Evans, and L. A. van Paassen. 2022a. “Crystal growth of MICP through microfluidic chip tests.” J. Geotech. Geoenviron. Eng. 148 (5): 06022002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002756.
Xiao, Y., X. He, M. Zaman, G. Ma, and C. Zhao. 2022b. “Review of strength improvements of biocemented soils.” Int. J. Geomech. 22 (11): 03122001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002565.
Xiao, Y., H. Li, J. Shi, J. Hu, L. Zhang, and H. Liu. 2023b. “Effect of particle size on small strain stiffness of biotreated sands.” Transp. Geotech. 41: 101027. https://doi.org/10.1016/j.trgeo.2023.101027.
Xiao, Y., G. Ma, H. Wu, H. Lu, and M. Zaman. 2022c. “Rainfall-induced erosion of biocemented graded slopes.” Int. J. Geomech. 22 (1): 04021256. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002239.
Xiao, Y., A. W. Stuedlein, J. Ran, T. M. Evans, L. Cheng, H. Liu, L. A. van Paassen, and J. Chu. 2019c. “Effect of particle shape on strength and stiffness of biocemented glass beads.” J. Geotech. Geoenviron. Eng. 145 (11): 06019016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002165.
Xiao, Y., L. Wang, X. Jiang, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019d. “Acoustic emission and force drop in grain crushing of carbonate sands.” J. Geotech. Geoenviron. Eng. 145 (9): 04019057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002141.
Xiao, Y., W. Xiao, H. Wu, Y. Liu, and H. Liu. 2023c. “Fracture of interparticle MICP bonds under compression.” Int. J. Geomech. 23 (3): 04022316. https://doi.org/10.1061/IJGNAI.GMENG-8282.
Xiao, Y., W. Xiao, H. Wu, H. Zhao, and H. Liu. 2023d. “Particle size effect on unconfined compressive strength of biotreated sand.” Transp. Geotech. 42: 101092. https://doi.org/10.1016/j.trgeo.2023.101092.
Xie, K., X. Jiang, D. Jiang, Y. Xiao, S. Chen, K. A. Dahmen, E. Vives, A. Planes, and E. K. H. Salje. 2019. “Change of crackling noise in granite by thermal damage: Monitoring nuclear waste deposits.” Am. Mineral. 104 (11): 1578–1584. https://doi.org/10.2138/am-2019-7058.
Zamani, A., and B. M. Montoya. 2019. “Undrained cyclic response of silty sands improved by microbial induced calcium carbonate precipitation.” Soil Dyn. Earthquake Eng. 120: 436–448. https://doi.org/10.1016/j.soildyn.2019.01.010.
Zhao, Q., L. Li, C. Li, M. Li, F. Amini, and H. Zhang. 2014. “Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease.” J. Mater. Civ. Eng. 26 (12): 04014094. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001013.
Zhao, Y., H. Liu, K. Xie, E. K. H. Salje, and X. Jiang. 2019. “Avalanches in compressed sandstone: Crackling noise under confinement.” Crystals 9 (11): 582. https://doi.org/10.3390/cryst9110582.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 24Issue 5May 2024

History

Received: Aug 7, 2023
Accepted: Nov 5, 2023
Published online: Feb 22, 2024
Published in print: May 1, 2024
Discussion open until: Jul 22, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). ORCID: https://orcid.org/0000-0002-9411-4660. Email: [email protected]
Bingyang Wu [email protected]
Graduate Student, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Xiang Jiang [email protected]
Professor, School of Materials Science and Engineering, Chongqing Jiaotong Univ., Chongqing 400074, China. Email: [email protected]
Graduate Student, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Chandrakant S. Desai, Dist.M.ASCE [email protected]
Regents Professor Emeritus, Dept. of Civil and Architectural Engineering and Mechanics, Univ. of Arizona, Tucson, AZ 85721. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share