Abstract

The soil–water characteristic curve (SWCC) model considering the temperature effect is significant in precisely predicting the relationship between the matric suction and degree of saturation in unsaturated soils in geotechnical and geoenvironmental engineering. In this work, we derived a new temperature-dependent wetting coefficient, incorporating a nonlinear temperature-dependent enthalpy of immersion per unit area. We introduce a simplified expression that successfully approximates the wetting coefficient for temperatures between 273.15 and 373.15 K. In addition, we propose a temperature-dependent matric suction equation and a temperature-dependent SWCC model. The new model comprehensively considers the temperature sensitivities of the water–air interface tension and wetting coefficient, which shows that an increase in temperature for a given matric suction leads to a decrease in the degree of saturation. The results illustrate that the new model is suitable for predicting the nonisothermal SWCC of unsaturated soils.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article. The additional equations and derivation procedures for the nonlinear temperature-dependent enthalpy of immersion, the temperature-dependent wetting coefficient, and the temperature-dependent matric suction are available from the corresponding author upon reasonable request.

Acknowledgments

The authors would like to acknowledge the financial support of the National Nature Science Foundation of China (Grant Nos. 52078085 and 52108301) and the Graduate Research and Innovation Foundation of Chongqing, China (Grant No. CYB23057). We would like to thank Dr. H. R. Wu from Chongqing University for instruction on the derivation procedures for the nonlinear enthalpy of immersion, the wetting coefficient, and the matric suction considering the temperature effect. We would also like to thank Mr. Q. Fang and Mr. W. Yang from Chongqing University for their assistance in preparing the original draft of this paper and for their suggestions.

References

Al-Mahbashi, A. M., M. A. Al-Shamrani, and A. A. B. Moghal. 2020. “Soil–water characteristic curve and one-dimensional deformation characteristics of fiber-reinforced lime-blended expansive soil.” J. Mater. Civ. Eng. 32 (6): 04020125. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003204.
An, N., S. Hemmati, and Y. Cui. 2017. “Numerical analysis of soil volumetric water content and temperature variations in an embankment due to soil-atmosphere interaction.” Comput. Geotech. 83: 40–51. https://doi.org/10.1016/j.compgeo.2016.10.010.
Aomine, S., and K. Egashira. 1970. “Heat of immersion of soil allophanic clays.” Soil Sci. Plant Nutr. 16 (5): 204–211. https://doi.org/10.1080/00380768.1970.10432842.
Arya, L. M., and J. F. Paris. 1981. “A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data.” Soil Sci. Soc. Am. J. 45 (6): 1023–1030. https://doi.org/10.2136/sssaj1981.03615995004500060004x.
Bachmann, J., R. Horton, S. A. Grant, and R. R. van der Ploeg. 2002. “Temperature dependence of water retention curves for wettable and water-repellent soils.” Soil Sci. Soc. Am. J. 66 (1): 44–52. https://doi.org/10.2136/sssaj2002.4400.
Bai, B., T. Xu, Q. Nie, and P. Li. 2020. “Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils.” Int. J. Heat Mass Transfer 153: 119573. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119573.
Cai, G., Y. Liu, A. Zhou, J. Li, R. Yang, and C. Zhao. 2022. “Temperature-dependent water retention curve model for both adsorption and capillarity.” Acta Geotech. 17 (11): 5157–5186. https://doi.org/10.1007/s11440-022-01657-8.
Cai, G.-q., C.-g. Zhao, J. Li, and Y. Liu. 2014. “A new triaxial apparatus for testing soil water retention curves of unsaturated soils under different temperatures.” J. Zhejiang Univ.-Sci. A 15 (5): 364–373. https://doi.org/10.1631/jzus.A1300358.
Cao, B., Y. Tian, R. Gui, and Y. Liu. 2021. “Experimental study on the effect of key factors on the soil–water characteristic curves of fine-grained tailings.” Front. Environ. Sci. 9: 710986. https://doi.org/10.3389/fenvs.2021.710986.
Chahal, R. S. 1965. “Effect to temperature and trapped air on matric suction.” Soil Sci. 100 (4): 262–266. https://doi.org/10.1097/00010694-196510000-00006.
Chen, Y., Y. Gao, C. W. W. Ng, and H. Guo. 2021. “Bio-improved hydraulic properties of sand treated by soybean urease induced carbonate precipitation and its application. Part 1: Water retention ability.” Transp. Geotech. 27: 100489. https://doi.org/10.1016/j.trgeo.2020.100489.
Constantz, J. 1982. “Temperature dependence of unsaturated hydraulic conductivity of two soils.” Soil Sci. Soc. Am. J. 46 (3): 466–470. https://doi.org/10.2136/sssaj1982.03615995004600030005x.
Derjaguin, B. V., V. V. Karasev, and E. N. Khromova. 1986. “Thermal expansion of water in fine pores.” J. Colloid Interface Sci. 109 (2): 586–587. https://doi.org/10.1016/0021-9797(86)90340-1.
Ding, L.-q., S. K. Vanapalli, W.-l. Zou, Z. Han, and X.-q. Wang. 2021. “Freeze-thaw and wetting-drying effects on the hydromechanical behavior of a stabilized expansive soil.” Constr. Build. Mater. 275: 122162. https://doi.org/10.1016/j.conbuildmat.2020.122162.
Faizal, M., A. Moradshahi, A. Bouazza, and J. S. McCartney. 2022. “Soil thermal response to temperature cycles and end boundary conditions of energy piles.” J. Geotech. Geoenviron. Eng. 148 (5): 04022027. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002794.
Ferrand, L. A., and J. A. Sulayman. 1996. “A computational investigation of some effects of temperature on soil moisture.” Water Resour. Res. 32 (12): 3429–3436. https://doi.org/10.1029/96WR02328.
Fredlund, D. G. 2006. “Unsaturated soil mechanics in engineering practice.” J. Geotech. Geoenviron. Eng. 132 (3): 286–321. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:3(286).
Fredlund, D. G., and A. Xing. 1994. “Equations for the soil-water characteristic curve.” Can. Geotech. J. 31 (4): 521–532. https://doi.org/10.1139/t94-061.
Gao, H., and M. Shao. 2015. “Effects of temperature changes on soil hydraulic properties.” Soil Tillage Res. 153: 145–154. https://doi.org/10.1016/j.still.2015.05.003.
Gens, A. 2010. “Soil–environment interactions in geotechnical engineering.” Géotechnique 60 (1): 3–74. https://doi.org/10.1680/geot.9.P.109.
Grant, S. A. 2003. “Extension of a temperature effects model for capillary pressure saturation relations.” Water Resour. Res. 39 (1): 1003. https://doi.org/10.1029/2000WR000193.
Grant, S. A., and D. Or. 2004. “Relationship between temperature sensitivity of capillary pressure and soil particle size.” Geophys. Res. Lett. 31 (7): L07501. https://doi.org/10.1029/2003GL019211.
Grant, S. A., and A. Salehzadeh. 1996. “Calculation of temperature effects on wetting coefficients of porous solids and their capillary pressure functions.” Water Resour. Res. 32 (2): 261–270. https://doi.org/10.1029/95WR02915.
Harkins, W. D., and G. Jura. 1944. “Surfaces of solids. XII. An absolute method for the determination of the area of a finely divided crystalline solid.” J. Am. Chem. Soc. 66 (8): 1362–1366. https://doi.org/10.1021/ja01236a047.
Hopmans, J. W., and J. H. Dane. 1986. “Temperature dependence of soil water retention curves.” Soil Sci. Soc. Am. J. 50 (3): 562–567. https://doi.org/10.2136/sssaj1986.03615995005000030004x.
Jacinto, A. C., M. V. Villar, R. Gómez-Espina, and A. Ledesma. 2009. “Adaptation of the van Genuchten expression to the effects of temperature and density for compacted bentonites.” Appl. Clay Sci. 42: 575–582. https://doi.org/10.1016/j.clay.2008.04.001.
Joshi, D. C., S. C. Iden, A. Peters, B. S. Das, and W. Durner. 2019. “Temperature dependence of soil hydraulic properties: Transient measurements and modeling.” Soil Sci. Soc. Am. J. 83 (6): 1628–1636. https://doi.org/10.2136/sssaj2019.04.0121.
Khalil, A. M. 1978. “Thermal treatment of nonporous silica. I. Chemistry of the surface and heats of immersion in water.” J. Colloid Interface Sci. 66 (3): 509–515. https://doi.org/10.1016/0021-9797(78)90071-1.
Kong, L.-w., M. Wang, A.-g. Guo, and Y. Wang. 2017. “Effect of drying environment on engineering properties of an expansive soil and its microstructure.” J. Mountain Sci. 14 (6): 1194–1201. https://doi.org/10.1007/s11629-017-4430-z.
Liu, C., F. Tong, B. Li, and Y. Zhao. 2020. “A water retention curve model describing the effect of temperature.” Eur. J. Soil Sci. 71: 44–54. https://doi.org/10.1111/ejss.12825.
Liu, H. H., and J. H. Dane. 1993. “Reconciliation between measured and theoretical temperature effects on soil water retention curves.” Soil Sci. Soc. Am. J. 57 (5): 1202–1207. https://doi.org/10.2136/sssaj1993.03615995005700050007x.
Liu, W.-h., J. Sang, G.-q. Hong, W.-g. Li, P. Hu, L. Wang, and X.-y. Lin. 2023. “Experimental investigations on the soil–water characteristic curve and the deformation behaviors of unsaturated cement–stabilized soft clay.” Int. J. Geomech. 23 (10): 04023183. https://doi.org/10.1061/IJGNAI.GMENG-8581.
Lu, N. 2016. “Generalized soil water retention equation for adsorption and capillarity.” J. Geotech. Geoenviron. Eng. 142 (10): 04016051. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001524.
Lu, N. 2020. “Unsaturated soil mechanics: Fundamental challenges, breakthroughs, and opportunities.” J. Geotech. Geoenviron. Eng. 146 (5): 02520001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002233.
Lu, N., and J. Godt. 2008. “Infinite slope stability under steady unsaturated seepage conditions.” Water Resour. Res. 44 (11): W11404. https://doi.org/10.1029/2008wr006976.
Lu, N., and W. J. Likos. 2004. Unsaturated soil mechanics. New York: Wiley.
Mao, X., J. Zhang, Q. Wu, F. Liu, X. Li, and Y. Wang. 2022. “Experimental study on moisture migration in unsaturated sand under cyclic diurnal temperature variation.” Front. Earth Sci. 10: 847463. https://doi.org/10.3389/feart.2022.847463.
McCartney, J. S., and A. Khosravi. 2013. “Field-monitoring system for suction and temperature profiles under pavements.” J. Perform. Constr. Facil. 27 (6): 818–825. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000362.
Mohammadi, M. H., and F. Meskini-Vishkaee. 2012. “Predicting the film and lens water volume between soil particles using particle size distribution data.” J. Hydrol. 475: 403–414. https://doi.org/10.1016/j.jhydrol.2012.10.024.
Nimmo, J. R., and E. E. Miller. 1986. “The temperature dependence of isothermal moisture vs. potential characteristics of soils.” Soil Sci. Soc. Am. J. 50 (5): 1105–1113. https://doi.org/10.2136/sssaj1986.03615995005000050004x.
Or, D., and M. Tuller. 1999. “Liquid retention and interfacial area in variably saturated porous media: Upscaling from single-pore to sample-scale model.” Water Resour. Res. 35 (12): 3591–3605. https://doi.org/10.1029/1999WR900262.
Peck, A. J. 1960. “Change of moisture tension with temperature and air pressure: Theoretical.” Soil Sci. 89 (6): 303–310. https://doi.org/10.1097/00010694-196006000-00001.
Philip, J. R., and D. A. De Vries. 1957. “Moisture movement in porous materials under temperature gradients.” Eos, Trans. Am. Geophys. Union 38 (2): 222–232. https://doi.org/10.1029/TR038i002p00222.
Ren, W., T. Yang, M. Huang, A. Zhang, H. Wei, W. Mi, Y. Wang, and J. Hu. 2021. “Optimal mixing ratio and SWCC fitting of lightweight soil with cotton stalk fibres.” Soils Found. 61: 453–464. https://doi.org/10.1016/j.sandf.2021.01.004.
Revil, A., and N. Lu. 2013. “Unified water isotherms for clayey porous materials.” Water Resour. Res. 49 (9): 5685–5699. https://doi.org/10.1002/wrcr.20426.
Roshani, P., and J. Á. I. Sedano. 2016. “Incorporating temperature effects in soil-water characteristic curves.” Indian Geotech. J. 46 (3): 309–318. https://doi.org/10.1007/s40098-016-0201-y.
Saffari, R., E. Nikooee, G. Habibagahi, and M. T. van Genuchten. 2019. “Effects of biological stabilization on the water retention properties of unsaturated soils.” J. Geotech. Geoenviron. Eng. 145 (7): 04019028. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002053.
Salager, S., M. S. El Youssoufi, and C. Saix. 2010. “Effect of temperature on water retention phenomena in deformable soils: Theoretical and experimental aspects.” Eur. J. Soil Sci. 61 (1): 97–107. https://doi.org/10.1111/j.1365-2389.2009.01204.x.
Shang, J., M. Flury, J. B. Harsh, and R. L. Zollars. 2008. “Comparison of different methods to measure contact angles of soil colloids.” J. Colloid Interface Sci. 328: 299–307. https://doi.org/10.1016/j.jcis.2008.09.039.
She, H. Y., and B. E. Sleep. 1998. “The effect of temperature on capillary pressure-saturation relationships for air-water and perchloroethylene-water systems.” Water Resour. Res. 34 (10): 2587–2597. https://doi.org/10.1029/98WR01199.
Silvestre-Albero, J., C. Gomez de Salazar, A. Sepulveda-Escribano, and F. Rodrıguez-Reinoso. 2001. “Characterization of microporous solids by immersion calorimetry.” Colloids Surf., A 187–188: 151–165. https://doi.org/10.1016/S0927-7757(01)00620-3.
Song, X., and Z. Zhang. 2022. “Determination of clay-water contact angle via molecular dynamics and deep-learning enhanced methods.” Acta Geotech. 17 (2): 511–525. https://doi.org/10.1007/s11440-021-01238-1.
Standnes, D. C., and P. Fotland. 2021. “A thermodynamic analysis of the impact of temperature on the capillary pressure in porous media.” Water Resour. Res. 57 (8): e2021WR029887. https://doi.org/10.1029/2021WR029887.
Torres, R., W. E. Dietrich, D. R. Montgomery, S. P. Anderson, and K. Loague. 1998. “Unsaturated zone processes and the hydrologic response of a steep, unchanneled catchment.” Water Resour. Res. 34 (8): 1865–1879. https://doi.org/10.1029/98WR01140.
Tuller, M., D. Or, and L. M. Dudley. 1999. “Adsorption and capillary condensation in porous media: Liquid retention and interfacial configurations in angular pores.” Water Resour. Res. 35 (7): 1949–1964. https://doi.org/10.1029/1999WR900098.
Uchaipichat, A., and N. Khalili. 2009. “Experimental investigation of thermo-hydro-mechanical behaviour of an unsaturated silt.” Géotechnique 59 (4): 339–353. https://doi.org/10.1680/geot.2009.59.4.339.
Vahedifard, F., A. AghaKouchak, and J. D. Robinson. 2015. “Drought threatens California’s levees.” Science 349 (6250): 799. https://doi.org/10.1126/science.349.6250.799-a.
Vahedifard, F., T. D. Cao, S. K. Thota, and E. Ghazanfari. 2018. “Nonisothermal models for soil-water retention curve.” J. Geotech. Geoenviron. Eng. 144 (9): 04018061. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001939.
Vahedifard, F., S. K. Thota, T. D. Cao, R. A. Samarakoon, and J. S. McCartney. 2020. “Temperature-dependent model for small-strain shear modulus of unsaturated soils.” J. Geotech. Geoenviron. Eng. 146 (12): 04020136. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002406.
van Genuchten, M. T. 1980. “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J. 44 (5): 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
Vargaftik, N. B., B. N. Volkov, and L. D. Voljak. 1983. “International tables of the surface tension of water.” J. Phys. Chem. Ref. Data 12 (3): 817–820. https://doi.org/10.1063/1.555688.
Wan, M., W. M. Ye, Y. G. Chen, Y. J. Cui, and J. Wang. 2015. “Influence of temperature on the water retention properties of compacted GMZ01 bentonite.” Environ. Earth Sci. 73: 4053–4061. https://doi.org/10.1007/s12665-014-3690-y.
Watson, K. M. 1943. “Thermodynamics of the liquid state.” Ind. Eng. Chem. 35 (4): 398–406. https://doi.org/10.1021/ie50400a004.
Xiao, P., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019. “Effect of relative density and biocementation on cyclic response of calcareous sand.” Can. Geotech. J. 56 (12): 1849–1862. https://doi.org/10.1139/cgj-2018-0573.
Xiao, Y., B. Cao, J. Shi, H. Wu, X. He, C. Zhao, J. Chu, and H. Liu. 2023a. “State-of-the-art review on the application of microfluidics in biogeotechnology.” Transp. Geotech. 41: 101030. https://doi.org/10.1016/j.trgeo.2023.101030.
Xiao, Y., H. Chen, A. W. Stuedlein, T. M. Evans, J. Chu, L. Cheng, N. Jiang, H. Lin, H. Liu, and H. M. Aboel-Naga. 2020. “Restraint of particle breakage by biotreatment method.” J. Geotech. Geoenviron. Eng. 146 (11): 04020123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
Xiao, Y., X. He, M. Zaman, G. Ma, and C. Zhao. 2022. “Review of strength improvements of biocemented soils.” Int. J. Geomech. 22 (11): 03122001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002565.
Xiao, Y., S. Liu, H. Wu, J. Shi, and H. Liu. 2023b. “Strengths and infinite slope stability of unsaturated soils.” Int. J. Geomech. 23: 04023237 https://doi.org/10.1061/IJGNAI.GMENG-9021.
Xiao, Y., Y. Tang, G. Ma, J. S. McCartney, and J. Chu. 2021a. “Thermal conductivity of biocemented graded sands.” J. Geotech. Geoenviron. Eng. 147 (10): 04021106. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002621.
Xiao, Y., Y. Wang, S. Wang, T. M. Evans, A. W. Stuedlein, J. Chu, C. Zhao, H. Wu, and H. Liu. 2021b. “Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase MICP method.” Acta Geotech. 16 (5): 1417–1427. https://doi.org/10.1007/s11440-020-01122-4.
Yao, C., C. Wei, T. Ma, P. Chen, and H. Tian. 2021. “Experimental investigation on the influence of thermochemical effect on the pore-water status in expansive soil.” Int. J. Geomech. 21 (6): 04021080. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002020.
Yates, K., and A. R. Russell. 2023. “The unsaturated characteristics of natural loess in slopes, New Zealand.” Géotechnique 73 (10): 871–884. https://doi.org/10.1680/jgeot.21.00042.
Young, G. J., and T. P. Bursh. 1960. “Immersion calorimetry studies of the interaction of water with silica surfaces.” J. Colloid Sci. 15: 361–369. https://doi.org/10.1016/0095-8522(60)90039-8.
Zeng, S., Z. Yan, and J. Yang. 2022. “A whole-process simulation for energy piles in unsaturated soils considering the coupled heat and moisture transfer.” Energy Build. 271: 112321. https://doi.org/10.1016/j.enbuild.2022.112321.
Zhou, A.-N., D. Sheng, and J. Li. 2014. “Modelling water retention and volume change behaviours of unsaturated soils in non-isothermal conditions.” Comput. Geotech. 55: 1–13. https://doi.org/10.1016/j.compgeo.2013.07.011.
Zhou, C., and C. W. W. Ng. 2016. “Simulating the cyclic behaviour of unsaturated soil at various temperatures using a bounding surface model.” Géotechnique 66 (4): 344–350. https://doi.org/10.1680/jgeot.15.P.001.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 24Issue 5May 2024

History

Received: Jul 10, 2023
Accepted: Oct 30, 2023
Published online: Feb 29, 2024
Published in print: May 1, 2024
Discussion open until: Jul 29, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). ORCID: https://orcid.org/0000-0002-9411-4660. Email: [email protected]
Ph.D. Candidate, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Jinquan Shi, M.ASCE [email protected]
Assistant Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Ph.D. Candidate, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. ORCID: https://orcid.org/0000-0003-0346-6431. Email: [email protected]
Musharraf Zaman, F.ASCE [email protected]
David Ross Boyd Professor and Aaron Alexander Professor, School of Civil Engineering and Environmental Science, and Alumni Chair Professor of Petroleum and Geological Engineering, Univ. of Oklahoma, 202 W. Boyd St., Rm. 334, Norman, OK 73019. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share