Technical Papers
Jun 5, 2024

Numerical Simulation of the Load Transfer Mechanism of a Geosynthetic Encased Stone Column Unit Cell under Embankment Loading

Publication: International Journal of Geomechanics
Volume 24, Issue 8

Abstract

This paper presents a numerical study to investigate the load transfer mechanism of a geosynthetic encased stone column (GESC) under embankment loading. The soils were modeled with a nonlinear elasto-plastic constitutive model incorporating a hyperbolic stress–strain relationship and the Mohr–Coulomb failure criterion. The geosynthetic encasement was modeled using a linearly elastic embedded liner element. Two interfaces were used to simulate the interaction between the geosynthetic encasement and the soils on either side. The validation of the numerical model was conducted using test data from vertical loading tests of the individual GESC installed in loose sand, including applied vertical stress–settlement curves and the circumferential strains profiles. Then, the influences of different design parameters on the load transfer mechanism of the GESC unit cell were investigated through a parametric study. Results indicate that the development of stress concentration ratio depends on the mobilization of tensile strains. The circumferential strains are significantly larger than the longitudinal strains, indicating that the circumferential tensile effect is dominant under embankment loading. The load transfer effect was gradually enhanced with increasing tensile strains. Increasing the geosynthetic encasement stiffness can be considered as an alternative to increasing the column infill friction angle in improving the load transfer effect.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This research is supported by the National Key R&D Program of China (Grant No. 2022YFC3080400), the Fundamental Research Funds for the Central Universities (Grant Nos. 2042023kf1014 and 2042023kfyq03), the National Natural Science Foundation of China (Grant No. 52078392), and the CRSRI Open Research Program (Program SN: CKWV2021872/KY). The authors gratefully acknowledge the financial supports.

Notation

The following symbols are used in this paper:
c
apparent cohesion, (kPa);
d
column diameter (m);
J
geosynthetic encasement stiffness (N/m);
K
elastic modulus number (dimensionless);
Kb
bulk modulus number (dimensionless);
Kur
unloading-reloading elastic modulus number (dimensionless);
le
encasement length (m);
m
bulk modulus exponent (dimensionless);
n
elastic modulus exponent (dimensionless);
Rf
failure ratio (dimensionless);
RLD
length-to-diameter ratio;
s
column spacing (m);
z
depth (m);
γ
unit weight (kN · m3);
ϕ
friction angle (°);
ϕ
soil friction angle (°);
ϕsc
column infill friction angle (°);
ϕsoil
surrounding soil friction angle (°);
σv
vertical stress (Pa); and
ψ
dilation angle (°).

References

Ali, K., J. T. Shahu, and K. G. Sharma. 2012. “Model tests on geosynthetic-reinforced stone columns: A comparative study.” Geosynth. Int. 19 (4): 292–305. https://doi.org/10.1680/gein.12.00016.
Ali, K., J. T. Shahu, and K. G. Sharma. 2014. “Model tests on single and groups of stone columns with different geosynthetic reinforcement arrangement.” Geosynth. Int. 21 (2): 103–118. https://doi.org/10.1680/gein.14.00002.
Almeida, M. S. S., I. Hosseinpour, M. Riccio, and D. Alexiew. 2015. “Behavior of geotextile-encased granular columns supporting test embankment on soft deposit.” J. Geotech. Geoenviron. Eng. 141 (3): 04014116. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001256.
Araujo, G. L. S., E. M. Palmeira, and R. P. Cunha. 2009. “Behaviour of geosynthetic-encased granular columns in porous collapsible soil.” Geosynth. Int. 16 (6): 433–451. https://doi.org/10.1680/gein.2009.16.6.433.
Bathurst, R. J., and F. M. Naftchali. 2021. “Geosynthetic reinforcement stiffness for analytical and numerical modelling of reinforced soil structures.” Geotext. Geomembr. 49 (4): 921–940. https://doi.org/10.1016/j.geotexmem.2021.01.003.
Bathurst, R. J., and F. M. Naftchali. 2023. “Influence of uncertainty in geosynthetic stiffness on deterministic and probabilistic analyses using analytical solutions for three reinforced soil problems.” Geotext. Geomembr. 51 (1): 117–130. https://doi.org/10.1016/j.geotexmem.2022.10.002.
Castro, J. 2014. “Numerical modelling of stone columns beneath a rigid footing.” Comput. Geotech. 60: 77–87. https://doi.org/10.1016/j.compgeo.2014.03.016.
Castro, J. 2017. “Groups of encased stone columns: Influence of column length and arrangement.” Geotext. Geomembr. 45 (2): 68–80. https://doi.org/10.1016/j.geotexmem.2016.12.001.
Castro, J., and C. Sagaseta. 2011. “Deformation and consolidation around encased stone columns.” Geotext. Geomembr. 29 (3): 268–276. https://doi.org/10.1016/j.geotexmem.2010.12.001.
Castro, J., and C. Sagaseta. 2013. “Influence of elastic strains during plastic deformation of encased stone columns.” Geotext. Geomembr. 37: 45–53. https://doi.org/10.1016/j.geotexmem.2013.01.005.
Cengiz, C., I. E. Kilic, and E. Guler. 2019. “On the shear failure mode of granular column embedded unit cells subjected to static and cyclic shear loads.” Geotext. Geomembr. 47 (2): 193–202. https://doi.org/10.1016/j.geotexmem.2018.12.011.
Chen, J.-F., X.-T. Wang, J.-F. Xue, Y. Zeng, and S.-Z. Feng. 2018. “Uniaxial compression behavior of geotextile encased stone columns.” Geotext. Geomembr. 46 (3): 277–283. https://doi.org/10.1016/j.geotexmem.2018.01.003.
Dash, S. K., and M. C. Bora. 2013. “Influence of geosynthetic encasement on the performance of stone columns floating in soft clay.” Can. Geotech. J. 50 (7): 754–765. https://doi.org/10.1139/cgj-2012-0437.
Duncan, J. M., P. Byrne, K. S. Wong, and P. Mabry. 1980. Strength, stress–strain and bulk modulus parameters for finite element analysis of stresses and movements in soil masses. Rep. No. UCB/GT/80-01. Berkeley, CA: University of California.
Ehsaniyamchi, A., and M. Ghazavi. 2019. “Short-term and long-term behavior of geosynthetic-reinforced stone columns.” Soils Found. 59 (5): 1579–1590. https://doi.org/10.1016/j.sandf.2019.07.007.
Ghazavi, M., and J. N. Afshar. 2013. “Bearing capacity of geosynthetic encased stone columns.” Geotext. Geomembr. 38 (38): 26–36. https://doi.org/10.1016/j.geotexmem.2013.04.003.
Gniel, J., and A. Bouazza. 2009. “Improvement of soft soils using geogrid encased stone columns.” Geotext. Geomembr. 27 (3): 167–175. https://doi.org/10.1016/j.geotexmem.2008.11.001.
Gniel, J., and A. Bouazza. 2010. “Construction of geogrid encased stone columns: A new proposal based on laboratory testing.” Geotext. Geomembr. 28 (1): 108–118. https://doi.org/10.1016/j.geotexmem.2009.12.012.
Gu, M., J. Han, and M. Zhao. 2020. “Three-dimensional DEM analysis of axially loaded geogrid-encased stone column in clay bed.” Int. J. Geomech. 20 (3): 04019180. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001595.
Gu, M., M. Zhao, L. Zhang, and J. Han. 2016. “Effects of geogrid encasement on lateral and vertical deformations of stone columns in model tests.” Geosynth. Int. 23 (2): 100–112. https://doi.org/10.1680/jgein.15.00035.
Han, J. 2015. “Recent research and development of ground column technologies.” Proc. Inst. Civ. Eng. Ground Improv. 168 (4): 246–264. https://doi.org/10.1680/grim.13.00016.
Han, J., and S. L. Ye. 2002. “A theoretical solution for consolidation rates of stone column-reinforced foundations accounting for smear and well resistance effects.” Int. J. Geomech. 2 (2): 135–151. https://doi.org/10.1061/(ASCE)1532-3641(2002)2:2(135).
Hong, Y.-S., C.-S. Wu, C.-M. Kou, and C.-H. Chang. 2017. “A numerical analysis of a fully penetrated encased granular column.” Geotext. Geomembr. 45 (5): 391–405. https://doi.org/10.1016/j.geotexmem.2017.05.002.
Hosseinpour, I., M. S. S. Almeida, and M. Riccio. 2015. “Full-scale load test and finite-element analysis of soft ground improved by geotextile-encased granular columns.” Geosynth. Int. 22 (6): 428–438. https://doi.org/10.1680/jgein.15.00023.
Itasca Consulting Group. 2019. FLAC3D version 6.0 [computer software]. Minneapolis, MN: Itasca Consulting Group.
Ji, M., J. Wang, J.-J. Zheng, and Y. Zheng. 2023. “Contribution of geosynthetic to the shear strength of geosynthetic encased stone columns.” Geosynth. Int. 1–14. https://doi.org/10.1680/jgein.22.00384.
Kadhim, S. T. 2016. “Stability analysis of geotextile encased sand columns.” Ph.D. thesis, Dept. of Civil, Environmental, and Architectural Engineering, Univ. of Kansas.
Kadhim, S. T., R. L. Parsons, and J. Han. 2018. “Three-dimensional numerical analysis of individual geotextile-encased sand columns with surrounding loose sand.” Geotext. Geomembr. 46 (6): 836–847. https://doi.org/10.1016/j.geotexmem.2018.08.002.
Kadhim, S. T., R. L. Parsons, and J. Han. 2022. “Vertical stability of geotextile-encased sand columns without and with surrounding soil.” Geosynth. Int. 29 (4): 426–441. https://doi.org/10.1680/jgein.21.00018a.
Khabbazian, M., V. N. Kaliakin, and C. L. Meehan. 2010. “Numerical study of the effect of geosynthetic encasement on the behaviour of granular columns.” Geosynth. Int. 17 (3): 132–143. https://doi.org/10.1680/gein.2010.17.3.132.
Lo, S. R., R. Zhang, and J. Mak. 2010. “Geosynthetic-encased stone columns in soft clay: A numerical study.” Geotext. Geomembr. 28 (3): 292–302. https://doi.org/10.1016/j.geotexmem.2009.09.015.
Miranda, M., J. Fernández-Ruiz, and J. Castro. 2021. “Critical length of encased stone columns.” Geotext. Geomembr. 49 (5): 1312–1323. https://doi.org/10.1016/j.geotexmem.2021.05.003.
Murugesan, S., and K. Rajagopal. 2006. “Geosynthetic-encased stone columns: Numerical evaluation.” Geotext. Geomembr. 24 (6): 349–358. https://doi.org/10.1016/j.geotexmem.2006.05.001.
Murugesan, S., and K. Rajagopal. 2007. “Model tests on geosynthetic-encased stone columns.” Geosynth. Int. 14 (6): 346–354. https://doi.org/10.1680/gein.2007.14.6.346.
Murugesan, S., and K. Rajagopal. 2010. “Studies on the behavior of single and group of geosynthetic encased stone columns.” J. Geotech. Geoenviron. Eng. 136 (1): 129–139. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000187.
Pulko, B., B. Majes, and J. Logar. 2011. “Geosynthetic-encased stone columns: Analytical calculation model.” Geotext. Geomembr. 29 (1): 29–39. https://doi.org/10.1016/j.geotexmem.2010.06.005.
Rayamajhi, D., S. A. Ashford, R. W. Boulanger, and A. Elgamal. 2016. “Dense granular columns in liquefiable ground. I: Shear reinforcement and cyclic stress ratio reduction.” J. Geotech. Geoenviron. Eng. 142 (7): 04016023. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001474.
Soderman, K. L., and J. P. Giroud. 1995. “Relationships between uniaxial and biaxial stresses and strains in geosynthetics.” Geosynth. Int. 2 (2): 495–504. https://doi.org/10.1680/gein.2.0020.
Tan, S. A., S. Tjahyono, and K. K. Oo. 2008. “Simplified plane-strain modeling of stone-column reinforced ground.” J. Geotech. Geoenviron. Eng. 134 (2): 185–194. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:2(185).
Vieira, C. S., M. L. Lopes, and L. M. Caldeira. 2013. “Sand–geotextile interface characterisation through monotonic and cyclic direct shear tests.” Geosynth. Int. 20 (1): 26–38. https://doi.org/10.1680/gein.12.00037.
Xu, Z., L. Zhang, B. Peng, and S. Zhou. 2021. “DEM-FDM numerical investigation on load transfer mechanism of GESC-supported embankment.” Comput. Geotech. 138 (4): 104321. https://doi.org/10.1016/j.compgeo.2021.104321.
Yoo, C. 2010. “Performance of geosynthetic-encased stone columns in embankment construction: Numerical investigation.” J. Geotech. Geoenviron. Eng. 136 (8): 1148–1160. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000316.
Yoo, C., and S.-B. Kim. 2009. “Numerical modeling of geosynthetic-encased stone column-reinforced ground.” Geosynth. Int. 16 (3): 116–126. https://doi.org/10.1680/gein.2009.16.3.116.
Yoo, C., and D. Lee. 2012. “Performance of geogrid-encased stone columns in soft ground: Full-scale load tests.” Geosynth. Int. 19 (6): 480–490. https://doi.org/10.1680/gein.12.00033.
Zhang, L., and M. Zhao. 2015. “Deformation analysis of geotextile-encased stone columns.” Int. J. Geomech. 15 (3): 04014053. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000389.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 24Issue 8August 2024

History

Received: Jul 6, 2023
Accepted: Feb 13, 2024
Published online: Jun 5, 2024
Published in print: Aug 1, 2024
Discussion open until: Nov 5, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Mingchang Ji [email protected]
Lecturer, School of Civil Engineering, Henan Polytechnic Univ., Jiaozuo, Henan 454003, China; formerly, Ph.D. Student, School of Civil Engineering, Wuhan Univ., Wuhan, Hubei 430072, China. Email: [email protected]
Jiaxin Wang [email protected]
Master’s Student, School of Civil Engineering, Wuhan Univ., Wuhan, Hubei 430072, China. Email: [email protected]
Master’s Student, School of Civil and Hydraulic Engineering, Huazhong Univ. of Science and Technology, Wuhan, Hubei 430074, China. Email: [email protected]
Jialong Deng [email protected]
Ph.D. Candidate, School of Civil Engineering, Wuhan Univ., Wuhan, Hubei 430072, China. Email: [email protected]
Professor, School of Civil Engineering, Wuhan Univ., Wuhan, Hubei 430072, China (corresponding author). ORCID: https://orcid.org/0000-0001-9038-4113. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share