Technical Notes
Feb 29, 2024

Tensile Strengths and Size Effects of Biocemented Sands

Publication: International Journal of Geomechanics
Volume 24, Issue 5

Abstract

Biocementation has broad application prospects for reinforcing granular materials in geotechnical engineering. However, only few studies have been conducted on the size effect in biocemented granular materials, despite the recognition of the size effect in the uncemented ones. In this study, a series of tests on Brazilian tensile strengths were carried out for biocemented sand, focusing on the size effect. Glass bead sand (GBS) and calcareous sand (CCS) of five different particle sizes were adopted at two different biocementation levels. Under otherwise identical conditions, the tensile strengths of biocemented CCS specimens were higher than that of the biocemented GBS specimens. The tensile strengths of the biocemented specimens decreased with an increase in particle size, which can be captured by a power function, inspired by the size–effect relation. The novel findings of this study can provide the size–effect function for the establishment of constitutive models and the data basis for the validation of numerical models when theoretical models are necessary in predictions of deformation and failure for field-scale biotreated soils.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and codes generated or used during the study appear in the published article. The dynamic images or videos of the Brazilian tensile tests, the scanning electron microscope images, the additional data used for validation, the possible range of fitting parameters, and the detailed calculations of the size–effect tensile strengths for biocemented GBS and CCS sand specimens are available from the corresponding author upon reasonable request.

Acknowledgments

The authors would like to acknowledge the financial support from the National Nature Science Foundation of China (Grant No. 52108303), the China Postdoctoral Science Foundation (Grant No. 2021M693741), and the Natural Science Foundation of Chongqing, China (Grant No. cstc2020jcyj-bshX0111). The authors thank Dr. G. Ma for the help in the preparation of the bacterial solution, cementation solution, biotreatment protocols, and tensile strength tests. In addition, the authors also thank Dr. J. Shi for the great assistance in discussions of the potential application of the test data in constitutive and numerical models during the preparation of the main text.

References

Abdullah, G. M. S., and H. Wahhab. 2019. “Stabilisation of soils with emulsified sulphur asphalt for road applications.” Road Mater. Pavement Des. 20 (5): 1228–1242. https://doi.org/10.1080/14680629.2018.1436465.
Adams, B. T., M. Xiao, and A. Wright. 2013. “Erosion mechanisms of organic soil and bioabatement of piping erosion of sand.” J. Geotech. Geoenviron. Eng. 139 (8): 1360–1368. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000863.
Ahenkorah, I., M. M. Rahman, M. R. Karim, and S. Beecham. 2023. “Unconfined compressive strength of MICP and EICP treated sands subjected to cycles of wetting–drying, freezing–thawing and elevated temperature: Experimental and EPR modelling.” J. Rock Mech. Geotech. Eng. 15 (5): 1226–1247. https://doi.org/10.1016/j.jrmge.2022.08.007.
Al Qabany, A., K. Soga, and C. Santamarina. 2012. “Factors affecting efficiency of microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 138 (8): 992–1001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666.
ASTM. 2016. Standard test method for splitting tensile strength of intact rock core specimens. ASTM D3967-16. West Conshohocken, PA: ASTM.
Baziar, M. H., A. Khoshniazpirkoohi, and O. E. Amirabadi. 2022. “Mitigation of liquefaction and lateral spreading by biogas method using shaking table tests and the strain energy approach.” Int. J. Geomech. 22 (12): 04022236. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002593.
Burbank, M., T. Weaver, R. Lewis, T. Williams, B. Williams, and R. Crawford. 2013. “Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria.” J. Geotech. Geoenviron. Eng. 139 (6): 928–936. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000781.
Chek, A., R. Crowley, T. N. Ellis, M. Durnin, and B. Wingender. 2021. “Evaluation of factors affecting erodibility improvement for MICP-treated beach sand.” J. Geotech. Geoenviron. Eng. 147 (3): 04021001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002481.
Chen, Y., Y. Gao, and H. Guo. 2021. “Bio-improved hydraulic properties of sand treated by soybean urease induced carbonate precipitation and its application Part 2: Sand–geotextile capillary barrier effect.” Transp. Geotech. 27: 100484. https://doi.org/10.1016/j.trgeo.2020.100484.
Cheng, L., R. Cord-Ruwisch, and M. A. Shahin. 2013. “Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation.” Can. Geotech. J. 50 (1): 81–90. https://doi.org/10.1139/cgj-2012-0023.
Cheng, L., M. A. Shahin, and J. Chu. 2019. “Soil bio-cementation using a new one-phase low-pH injection method.” Acta Geotech. 14 (3): 615–626. https://doi.org/10.1007/s11440-018-0738-2.
Cheng, L., M. A. Shahin, and D. Mujah. 2017. “Influence of key environmental conditions on microbially induced cementation for soil stabilization.” J. Geotech. Geoenviron. Eng. 143 (1): 04016083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586.
Choi, S.-G., K. Wang, and J. Chu. 2016. “Properties of biocemented, fiber reinforced sand.” Constr. Build. Mater. 120: 623–629. https://doi.org/10.1016/j.conbuildmat.2016.05.124.
Chu, J., V. Stabnikov, and V. Ivanov. 2012. “Microbially induced calcium carbonate precipitation on surface or in the bulk of soil.” Geomicrobiol. J. 29 (6): 544–549. https://doi.org/10.1080/01490451.2011.592929.
Cui, M.-J., J.-J. Zheng, J. Chu, C.-C. Wu, and H.-J. Lai. 2021. “Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand.” Acta Geotech. 16 (5): 1377–1389. https://doi.org/10.1007/s11440-020-01099-0.
Cui, M.-J., J.-J. Zheng, R.-J. Zhang, H.-J. Lai, and J. Zhang. 2017. “Influence of cementation level on the strength behaviour of bio-cemented sand.” Acta Geotech. 12 (5): 971–986. https://doi.org/10.1007/s11440-017-0574-9.
Cuthbert, M. O., L. A. McMillan, S. Handley-Sidhu, M. S. Riley, D. J. Tobler, and V. R. Phoenix. 2013. “A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation.” Environ. Sci. Technol. 47 (23): 13637–13643. https://doi.org/10.1021/es402601g.
Darby, K. M., G. L. Hernandez, J. T. DeJong, R. W. Boulanger, M. G. Gomez, and D. W. Wilson. 2019. “Centrifuge model testing of liquefaction mitigation via microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 145 (10): 04019084. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002122.
DeJong, J. T., M. B. Fritzges, and K. Nüsslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
Dejong, J. T., B. C. Martinez, T. R. Ginn, C. Hunt, D. Major, and B. Tanyu. 2014. “Development of a scaled repeated five-spot treatment model for examining microbial induced calcite precipitation feasibility in field applications.” Geotech. Test. J. 37 (3): 424–435. https://doi.org/10.1520/GTJ20130089.
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
DeJong, J. T., et al. 2013. “Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges.” Géotechnique 63 (4): 287–301. https://doi.org/10.1680/geot.SIP13.P.017.
El Mountassir, G., J. M. Minto, L. A. van Paassen, E. Salifu, and R. J. Lunn. 2018. “Applications of microbial processes in geotechnical engineering.” Adv. Appl. Microbiol. 104: 39–91. https://doi.org/10.1016/bs.aambs.2018.05.001.
Fang, X., Y. Yang, Z. Chen, H. Liu, Y. Xiao, and C. Shen. 2020. “Influence of fiber content and length on engineering properties of MICP-treated coral sand.” Geomicrobiol. J. 37 (6): 582–594. https://doi.org/10.1080/01490451.2020.1743392.
Fattahi, S. M., A. Soroush, and N. Huang. 2020. “Biocementation control of sand against wind erosion.” J. Geotech. Geoenviron. Eng. 146 (6): 04020045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002268.
Feng, K., and B. M. Montoya. 2016. “Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading.” J. Geotech. Geoenviron. Eng. 142 (1): 04015057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379.
Fernández Rodríguez, R., and R. Cardoso. 2022. “Study of biocementation treatment to prevent erosion by concentrated water flow in a small-scale sand slope.” Transp. Geotech. 37: 100873. https://doi.org/10.1016/j.trgeo.2022.100873.
Frossard, E., C. Dano, W. Hu, and P.-Y. Hicher. 2012. “Rockfill shear strength evaluation: A rational method based on size effects.” Geotechnique 62 (5): 415–427. https://doi.org/10.1680/geot.10.P.079.
Gao, K., P. Bick, M. T. Suleiman, X. Li, J. Helm, D. G. Brown, and N. Zouari. 2023a. “Wind erosion mitigation using microbial-induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 149 (8): 04023053. https://doi.org/10.1061/JGGEFK.GTENG-11140.
Gao, K., H. Lin, M. T. Suleiman, P. Bick, T. Babuska, X. Li, J. Helm, D. G. Brown, and N. Zouari. 2023b. “Shear and tensile strength measurements of CaCO3 cemented bonds between glass beads treated by microbially induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 149 (1): 04022117. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002927.
Gao, Y., L. Hang, J. He, F. Zhang, and L. Van Paassen. 2021. “Pullout behavior of geosynthetic reinforcement in biocemented soils.” Geotext. Geomembr. 49 (3): 646–656. https://doi.org/10.1016/j.geotexmem.2020.10.028.
Ghasemi, P., and B. M. Montoya. 2022. “Field implementation of microbially induced calcium carbonate precipitation for surface erosion reduction of a coastal plain sandy slope.” J. Geotech. Geoenviron. Eng. 148 (9): 04022071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002836.
Gomez, M. G., C. M. Anderson, C. M. R. Graddy, J. T. DeJong, D. C. Nelson, and T. R. Ginn. 2017. “Large-scale comparison of bioaugmentation and biostimulation approaches for biocementation of sands.” J. Geotech. Geoenviron. Eng. 143 (5): 04016124. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001640.
Gomez, M. G., J. T. DeJong, and C. M. Anderson. 2018. “Effect of bio-cementation on geophysical and cone penetration measurements in sands.” Can. Geotech. J. 55 (11): 1632–1646. https://doi.org/10.1139/cgj-2017-0253.
Gomez, M. G., C. M. R. Graddy, J. T. DeJong, and D. C. Nelson. 2019. “Biogeochemical changes during bio-cementation mediated by stimulated and augmented ureolytic microorganisms.” Sci. Rep. 9: 11517. https://doi.org/10.1038/s41598-019-47973-0.
Gomez, M. G., C. E. Hunt, B. C. Martinez, J. T. Dejong, D. W. Major, and S. M. Dworatzek. 2015. “Field-scale bio-cementation tests to improve sands.” Proc. Inst. Civ. Eng. Ground Improv. 168 (6): 206–216. https://doi.org/10.1680/grim.13.00052.
Jiang, N.-J., and K. Soga. 2017. “The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures.” Géotechnique 67 (1): 42–55. https://doi.org/10.1680/jgeot.15.P.182.
Jiang, N.-J., C.-S. Tang, L.-Y. Yin, Y.-H. Xie, and B. Shi. 2019. “Applicability of microbial calcification method for sandy-slope surface erosion control.” J. Mater. Civil. Eng. 31 (11): 04019250. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002897.
Kashizadeh, E., A. Mukherjee, and A. Tordesillas. 2021. “Experimental and numerical investigations on confined granular systems stabilized by bacterial cementation.” Int. J. Geomech. 21 (1): 04020244. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001891.
Kirkland, C. M., A. Thane, R. Hiebert, R. Hyatt, J. Kirksey, A. B. Cunningham, R. Gerlach, L. Spangler, and A. J. Phillips. 2020. “Addressing wellbore integrity and thief zone permeability using microbially-induced calcium carbonate precipitation (MICP): A field demonstration.” J. Petrol. Sci. Eng. 190: 107060. https://doi.org/10.1016/j.petrol.2020.107060.
Konstantinou, C., G. Biscontin, N.-J. Jiang, and K. Soga. 2021. “Application of microbially induced carbonate precipitation to form bio-cemented artificial sandstone.” J. Rock Mech. Geotech. Eng. 13 (3): 579–592. https://doi.org/10.1016/j.jrmge.2021.01.010.
Kou, H.-L., C. Wu, B.-A. Jang, and D. Wang. 2021. “Spatial distribution of CaCO3 in biocemented sandy slope using surface percolation.” J. Mater. Civil. Eng. 33 (6): 06021004. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003729.
Ladd, R. S. 1978. “Preparing test specimens using undercompaction.” Geotech. Test. J. 1 (1): 16–23. https://doi.org/10.1520/GTJ10364J.
Lai, H.-J., M.-J. Cui, and J. Chu. 2023. “Stress–dilatancy behavior of biocementation-enhanced geogrid-reinforced sand.” Int. J. Geomech. 23 (5): 04023043. https://doi.org/10.1061/IJGNAI.GMENG-8252.
Lai, H.-J., M.-J. Cui, S.-F. Wu, Y. Yang, and J. Chu. 2021. “Retarding effect of concentration of cementation solution on biocementation of soil.” Acta Geotech. 16 (5): 1457–1472. https://doi.org/10.1007/s11440-021-01149-1.
Landa-Marbán, D., S. Tveit, K. Kumar, and S. E. Gasda. 2021. “Practical approaches to study microbially induced calcite precipitation at the field scale.” Int. J. Greenh. Gas Control 106: 103256. https://doi.org/10.1016/j.ijggc.2021.103256.
Lee, M., M. G. Gomez Michael, M. El Kortbawi, and K. Ziotopoulou. 2022. “Effect of light biocementation on the liquefaction triggering and post-triggering behavior of loose sands.” J. Geotech. Geoenviron. Eng. 148 (1): 04021170. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002707.
Liu, B., Y.-H. Xie, C.-S. Tang, X.-H. Pan, N.-J. Jiang, D. N. Singh, Y.-J. Cheng, and B. Shi. 2021a. “Bio-mediated method for improving surface erosion resistance of clayey soils.” Eng. Geol. 293: 106295. https://doi.org/10.1016/j.enggeo.2021.106295.
Liu, K.-W., N.-J. Jiang, J.-D. Qin, Y.-J. Wang, C.-S. Tang, and X.-L. Han. 2021b. “An experimental study of mitigating coastal sand dune erosion by microbial-and enzymatic-induced carbonate precipitation.” Acta Geotech. 16 (2): 467–480. https://doi.org/10.1007/s11440-020-01046-z.
Liu, L., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019. “Strength, stiffness, and microstructure characteristics of biocemented calcareous sand.” Can. Geotech. J. 56 (10): 1502–1513. https://doi.org/10.1139/cgj-2018-0007.
Liu, L., H. Liu, Y. Xiao, J. Chu, P. Xiao, and Y. Wang. 2018. “Biocementation of calcareous sand using soluble calcium derived from calcareous sand.” Bull. Eng. Geol. Environ. 77 (4): 1781–1791. https://doi.org/10.1007/s10064-017-1106-4.
Lv, C., C. Zhu, C.-S. Tang, Q. Cheng, L.-Y. Yin, and B. Shi. 2021. “Effect of fiber reinforcement on the mechanical behavior of bio-cemented sand.” Geosynth. Int. 28 (2): 195–205. https://doi.org/10.1680/jgein.20.00037.
Ma, G., Q. Fang, Y. Xiao, J. Chu, and H. Liu. 2022a. “Microscopic investigation on bonding fracture of biocemented sand from novel in-situ Brazil splitting tests.” Acta Geotech. 17 (11): 4935–4951. https://doi.org/10.1007/s11440-022-01682-7.
Ma, G., X. He, X. Jiang, H. Liu, J. Chu, and Y. Xiao. 2021. “Strength and permeability of bentonite-assisted biocemented coarse sand.” Can. Geotech. J. 58 (7): 969–981. https://doi.org/10.1139/cgj-2020-0045.
Ma, G., Y. Xiao, X. He, J. Li, J. Chu, and H. Liu. 2022b. “Kaolin-nucleation-based biotreated calcareous sand through unsaturated percolation method.” Acta Geotech. 17 (8): 3181–3193. https://doi.org/10.1007/s11440-022-01459-y.
Mahawish, A., A. Bouazza, and W. P. Gates. 2021. “Model tests on biogrouted granular columns in soft soil.” Can. Geotech. J. 58 (12): 1791–1800. https://doi.org/10.1139/cgj-2020-0361.
Marín, S., O. Cabestrero, C. Demergasso, S. Olivares, V. Zetola, and M. Vera. 2021. “An indigenous bacterium with enhanced performance of microbially-induced Ca-carbonate biomineralization under extreme alkaline conditions for concrete and soil-improvement industries.” Acta Biomater. 120: 304–317. https://doi.org/10.1016/j.actbio.2020.11.016.
Martinez, A., L. Huang, and M. G. Gomez. 2019. “Thermal conductivity of MICP-treated sands at varying degrees of saturation.” Geotech. Lett. 9 (1): 15–21. https://doi.org/10.1680/jgele.18.00126.
Martinez, B. C., J. T. DeJong, T. R. Ginn, B. M. Montoya, T. H. Barkouki, C. Hunt, B. Tanyu, and D. Major. 2013. “Experimental optimization of microbial-induced carbonate precipitation for soil improvement.” J. Geotech. Geoenviron. Eng. 139 (4): 587–598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
Meng, H., Y. Gao, J. He, Y. Qi, and L. Hang. 2021. “Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests.” Geoderma 383: 114723. https://doi.org/10.1016/j.geoderma.2020.114723.
Mitchell, A. C., K. Dideriksen, L. H. Spangler, A. B. Cunningham, and R. Gerlach. 2010. “Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping.” Environ. Sci. Technol. 44 (13): 5270–5276. https://doi.org/10.1021/es903270w.
Montoya, B. M., and J. T. DeJong. 2015. “Stress–strain behavior of sands cemented by microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 141 (6): 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
Mortensen, B. M., M. J. Haber, J. T. DeJong, L. F. Caslake, and D. C. Nelson. 2011. “Effects of environmental factors on microbial induced calcium carbonate precipitation.” J. Appl. Microbiol. 111 (2): 338–349. https://doi.org/10.1111/j.1365-2672.2011.05065.x.
Moug, D. M., et al. 2022. “Field trials of microbially induced desaturation in low-plasticity silt.” J. Geotech. Geoenviron. Eng. 148 (11): 05022005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002890.
Mousavi, S., and M. Ghayoomi. 2021. “Liquefaction mitigation of sands with nonplastic fines via microbial-induced partial saturation.” J. Geotech. Geoenviron. Eng. 147 (2): 04020156. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002444.
Mujah, D., M. A. Shahin, L. Cheng, and A. Karrech. 2021. “Experimental and analytical study on geomechanical behavior of biocemented sand.” Int. J. Geomech. 21 (8): 04021126. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002105.
Naeimi, M., J. Chu, M. Khosroshahi, and L. Kashi Zenouzi. 2023. “Soil stabilization for dunes fixation using microbially induced calcium carbonate precipitation.” Geoderma 429: 116183. https://doi.org/10.1016/j.geoderma.2022.116183.
Nafisi, A., D. Mocelin, B. M. Montoya, and S. Underwood. 2020. “Tensile strength of sands treated with microbially induced carbonate precipitation.” Can. Geotech. J. 57 (10): 1611–1616. https://doi.org/10.1139/cgj-2019-0230.
Nie, J., et al. 2023. “Predicting residual friction angle of lunar regolith based on chang’e-5 lunar samples.” Sci. Bull. 68 (7): 730–739. https://doi.org/10.1016/j.scib.2023.03.019.
O’Donnell, S. T., B. E. Rittmann, and E. Kavazanjian Jr. 2017. “MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. II: MICP.” J. Geotech. Geoenviron. Eng. 143 (12): 04017095. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001806.
Pan, X., J. Chu, Y. Yang, and L. Cheng. 2020. “A new biogrouting method for fine to coarse sand.” Acta Geotech. 15 (1): 1–16. https://doi.org/10.1007/s11440-019-00872-0.
Ren, J., H. He, and K. Senetakis. 2021. “A micromechanical-based investigation on the frictional behaviour of artificially bonded analogue sedimentary rock with calcium carbonate.” Pure Appl. Geophys. 178 (11): 4461–4486. https://doi.org/10.1007/s00024-021-02875-z.
Riveros, G. A., and A. Sadrekarimi. 2020a. “Effect of microbially induced cementation on the instability and critical state behaviours of Fraser River sand.” Can. Geotech. J. 57 (12): 1870–1880. https://doi.org/10.1139/cgj-2019-0514.
Riveros, G. A., and A. Sadrekarimi. 2020b. “Liquefaction resistance of Fraser River sand improved by a microbially-induced cementation.” Soil Dyn. Earthq. Eng. 131: 106034. https://doi.org/10.1016/j.soildyn.2020.106034.
San Pablo, A. C. M., et al. 2020. “Meter-scale biocementation experiments to advance process control and reduce impacts: Examining spatial control, ammonium by-product removal, and chemical reductions.” J. Geotech. Geoenviron. Eng. 146 (11): 04020125. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002377.
Saracho, A. C., S. K. Haigh, and M. E. Jorat. 2021. “Flume study on the effects of microbial induced calcium carbonate precipitation (MICP) on the erosional behaviour of fine sand.” Géotechnique 71 (12): 1135–1149. https://doi.org/10.1680/jgeot.19.P.350.
Sasaki, T., and R. Kuwano. 2016. “Undrained cyclic triaxial testing on sand with non-plastic fines content cemented with microbially induced CaCO3.” Soils Found. 56 (3): 485–495. https://doi.org/10.1016/j.sandf.2016.04.014.
Song, C., C. Wang, D. Elsworth, and S. Zhi. 2022. “Compressive strength of MICP-treated silica sand with different particle morphologies and gradings.” Geomicrobiol. J. 39 (2): 148–154. https://doi.org/10.1080/01490451.2021.2020936.
Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. “Microbiological precipitation of CaCO3.” Soil Biol. Biochem. 31 (11): 1563–1571. https://doi.org/10.1016/s0038-0717(99)00082-6.
Sun, X., L. Miao, R. Chen, H. Wang, L. Wu, and J. Xia. 2021a. “Liquefaction resistance of biocemented loess soil.” J. Geotech. Geoenviron. Eng. 147 (11): 04021117. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002638.
Sun, X., L. Miao, H. Wang, W. Yin, and L. Wu. 2021b. “Mineralization crust field experiment for desert sand solidification based on enzymatic calcification.” J. Environ. Manage. 287: 112315. https://doi.org/10.1016/j.jenvman.2021.112315.
Sun, X., L. Miao, J. Yuan, H. Wang, and L. Wu. 2021c. “Application of enzymatic calcification for dust control and rainfall erosion resistance improvement.” Sci. Total. Environ. 759: 143468. https://doi.org/10.1016/j.scitotenv.2020.143468.
Tian, Z., X. Tang, J. Li, Z. Xiu, and Z. Xue. 2021. “Influence of the grouting parameters on microbially induced carbonate precipitation for soil stabilization.” Geomicrobiol. J. 38 (9): 755–767. https://doi.org/10.1080/01490451.2021.1946623.
van Paassen, L. A., R. Ghose, T. J. M. van der Linden, W. R. L. van der Star, and M. C. M. van Loosdrecht. 2010. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (12): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
Venuleo, S., L. Laloui, D. Terzis, T. Hueckel, and M. Hassan. 2016. “Microbially induced calcite precipitation effect on soil thermal conductivity.” Geotech. Lett. 6 (1): 39–44. https://doi.org/10.1680/jgele.15.00125.
Wang, L., J. Chu, S. Wu, and H. Wang. 2021a. “Stress–dilatancy behavior of cemented sand: Comparison between bonding provided by cement and biocement.” Acta Geotech. 16 (5): 1441–1456. https://doi.org/10.1007/s11440-021-01146-4.
Wang, L., Y. Gao, J. He, Y. Gao, and L. A. van Paassen. 2021b. “Effect of biogenic gas formation through microbial induced desaturation and precipitation on the static response of sands with varied relative density.” J. Geotech. Geoenviron. Eng. 147 (8): 04021071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002578.
Wang, W., V. Nardelli, and M. R. Coop. 2017. “Micro-mechanical behaviour of artificially cemented sands under compression and shear.” Geotech. Lett. 7 (3): 218–224. https://doi.org/10.1680/jgele.16.00166.
Wang, X., and U. Nackenhorst. 2020. “A coupled bio-chemo-hydraulic model to predict porosity and permeability reduction during microbially induced calcite precipitation.” Adv. Water Resour. 140: 103563. https://doi.org/10.1016/j.advwatres.2020.103563.
Wang, Y., C. Konstantinou, S. Tang, and H. Chen. 2023. “Applications of microbial-induced carbonate precipitation: A state-of-the-art review.” Biogeotechnics 1 (1): 100008. https://doi.org/10.1016/j.bgtech.2023.100008.
Wang, Z., J. Zhang, Q. Li, N. Zhang, and W. Feng. 2022. “A theoretical thermal conductivity model for soils treated with microbially induced calcite precipitation (MICP).” Int. J. Heat Mass Transf. 183: 122091. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122091.
Wang, Z., N. Zhang, J. Ding, Q. Li, and J. Xu. 2020. “Thermal conductivity of sands treated with microbially induced calcite precipitation (MICP) and model prediction.” Int. J. Heat Mass Transf. 147: 118899. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118899.
Weibull, W. 1951. “A statistical distribution function of wide applicability.” J. Appl. Mech. 18 (3): 293–297. https://doi.org/10.1115/1.4010337.
Whiffin, V. S., L. A. van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
Wu, H., W. Wu, W. Liang, F. Dai, H. Liu, and Y. Xiao. 2023a. “3D DEM modeling of biocemented sand with fines as cementing agents.” Int. J. Numer. Anal. Met. 47 (2): 212–240. https://doi.org/10.1002/nag.3466.
Wu, S., B. Li, and J. Chu. 2021. “Stress–dilatancy behavior of MICP-treated sand.” Int. J. Geomech. 21 (3): 04020264. https://doi.org/10.1061/(ASCE)gm.1943-5622.0001923.
Wu, S., B. Li, and J. Chu. 2023b. “Large-scale model tests of biogrouting for sand and rock.” Proc. Inst. Civ. Eng.-Ground Improv. 176 (1): 23–32. https://doi.org/10.1680/jgrim.18.00074.
Xiao, P., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019a. “Effect of relative density and biocementation on cyclic response of calcareous sand.” Can. Geotech. J. 56 (12): 1849–1862. https://doi.org/10.1139/cgj-2018-0573.
Xiao, P., H. Liu, Y. Xiao, A. W. Stuedlein, and T. M. Evans. 2018. “Liquefaction resistance of bio-cemented calcareous sand.” Soil Dyn. Earthq. Eng. 107: 9–19. https://doi.org/10.1016/j.soildyn.2018.01.008.
Xiao, Y., H. Chen, A. W. Stuedlein, T. M. Evans, J. Chu, L. Cheng, N. Jiang, H. Lin, H. Liu, and H. M. Aboel-Naga. 2020. “Restraint of particle breakage by biotreatment method.” J. Geotech. Geoenviron. Eng. 146 (11): 04020123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
Xiao, Y., X. He, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019b. “Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand.” J. Geotech. Geoenviron. Eng. 145 (9): 04019048. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002108.
Xiao, Y., X. He, M. Zaman, G. Ma, and C. Zhao. 2022. “Review of strength improvements of biocemented soils.” Int. J. Geomech. 22 (11): 03122001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002565.
Xiao, Y., A. W. Stuedlein, J. Ran, T. M. Evans, L. Cheng, H. Liu, L. A. van Paassen, and J. Chu. 2019c. “Effect of particle shape on strength and stiffness of biocemented glass beads.” J. Geotech. Geoenviron. Eng. 145 (11): 06019016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002165.
Xiao, Y., W. Xiao, H. Wu, Y. Liu, and H. Liu. 2023a. “Fracture of interparticle MICP bonds under compression.” Int. J. Geomech. 23 (3): 04022316. https://doi.org/10.1061/IJGNAI.GMENG-8282.
Xiao, Y., W. Xiao, H. Wu, H. Zhao, and H. Liu. 2023b. “Particle size effect on unconfined compressive strength of biotreated sand.” Transp. Geotech. 42: 101092. https://doi.org/10.1016/j.trgeo.2023.101092.
Yang, P., E. Kavazanjian, and N. Neithalath. 2019. “Particle-scale mechanisms in undrained triaxial compression of biocemented sands: Insights from 3D DEM simulations with flexible boundary.” Int. J. Geomech. 19 (4): 04019009. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001346.
Zamani, A., P. Xiao, T. Baumer, T. J. Carey, B. Sawyer, J. T. DeJong, and R. W. Boulanger. 2021. “Mitigation of liquefaction triggering and foundation settlement by MICP treatment.” J. Geotech. Geoenviron. Eng. 147 (10): 04021099. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002596.
Zeng, C., Y. Veenis, A. Hall Caitlyn, S. Young Elizabeth, R. L. van der Star Wouter, J.-J. Zheng, and A. van Paassen Leon. 2021. “Experimental and numerical analysis of a field trial application of microbially induced calcite precipitation for ground stabilization.” J. Geotech. Geoenviron. Eng. 147 (7): 05021003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002545.
Zhang, X., Y. Chen, H. Liu, Z. Zhang, and X. Ding. 2020. “Performance evaluation of a MICP-treated calcareous sandy foundation using shake table tests.” Soil Dyn. Earthq. Eng. 129: 105959. https://doi.org/10.1016/j.soildyn.2019.105959.
Zhao, Y., Z. Xiao, C. Fan, W. Shen, Q. Wang, and P. Liu. 2020. “Comparative mechanical behaviors of four fiber-reinforced sand cemented by microbially induced carbonate precipitation.” Bull. Eng. Geol. Environ. 79 (6): 3075–3086. https://doi.org/10.1007/s10064-020-01756-4.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 24Issue 5May 2024

History

Received: Jun 21, 2023
Accepted: Nov 5, 2023
Published online: Feb 29, 2024
Published in print: May 1, 2024
Discussion open until: Jul 29, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Yang Xiao, M.ASCE [email protected]
Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Wentao Xiao, S.M.ASCE [email protected]
Master’s Candidate, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Huanran Wu, Ph.D. [email protected]
Associate Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). Email: [email protected]
Musharraf Zaman, F.ASCE [email protected]
David Ross Boyd Professor and Aaron Alexander Professor, School of Civil Engineering and Environmental Science, and Alumni Chair Professor of Petroleum and Geological Engineering, Univ. of Oklahoma, 202 W. Boyd St., Rm. 334, Norman, OK 73019. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share