Technical Papers
Mar 5, 2024

A New Rock Brittleness Index Based on Crack Initiation and Crack Damage Stress Thresholds

Publication: International Journal of Geomechanics
Volume 24, Issue 5

Abstract

The brittleness of rocks is an important factor in the design of rock engineering projects, such as hydraulic fracturing, rockburst prediction, wellbore stability, and drillability. Therefore, an accurate assessment of rock brittleness is of high practical importance. However, the definition and the measurement of rock brittleness are not yet standardized. The present study proposes a new index for describing rock brittleness using crack initiation and crack damage stress thresholds for rocks with Class I stress‒strain curves. Uniaxial compressive strength (UCS) tests were conducted on fine-grained, medium-grained, and coarse-grained dolomite rock specimens in order to evaluate the performance of this index on describing brittleness. Based on the results, first, the effect of grain size on the crack initiation and crack damage stress was evaluated. Subsequently, the effect of grain size on common brittleness indexes was examined and compared to the proposed index. The results indicate that an increase in the grain size in the studied rocks increases the crack initiation, crack damage, and peak stress. It was determined that the ratio between the axial strains corresponding to the peak and crack damage stresses during the uniaxial compressive test is almost constant for all three rock types. Additionally, it was concluded, using the conventional and proposed brittleness indexes, that the brittleness index increases with an increase in grain size.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Aftes. 2003. “Guidelines for characterization of rock masses useful for the design and the construction of underground structures.” Tunnels et Ouvrages Souterrains 177: 49.
Ajalloeian, R., H. Mansouri, and E. Baradaran. 2017. “Some carbonate rock texture effects on mechanical behavior, based on Koohrang tunnel data, Iran.” Bull. Eng. Geol. Environ. 76: 295–307. https://doi.org/10.1007/s10064-016-0861-y.
Altindag, R. 2002. “The evaluation of rock brittleness concept on rotary blast hole drills.” J. S. Afr. Inst. Min. Metall. 102 (1): 61–66.
Altindag, R. 2003. “Correlation of specific energy with rock brittleness concepts on rock cutting.” J. S. Afr. Inst. Min. Metall. 103 (3): 163–171.
Altindag, R. 2010. “Assessment of some brittleness indexes in rock-drilling efficiency.” Rock Mech. Rock Eng. 43 (3): 361–370. https://doi.org/ 10.1007/s00603-009-0057-x.
Amann, F., Ö Ündül, and P. K. Kaiser. 2014. “Crack initiation and crack propagation in heterogeneous sulfate-rich clay rocks.” Rock Mech. Rock Eng. 47 (5): 1849–1865. https://doi.org/ 10.1007/s00603-013-0495-3.
Andreev, G. E. 1995. Brittle failure of rock materials. Boca Raton, FL: CRC Press.
Bieniawski, Z. T. 1967. “Mechanism of brittle rock fracture: Part II—Experimental studies.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 4 (4): 407–423. https://doi.org/ 10.1016/0148-9062(67)90031-9.
Bieniawski, Z. T., and M. J. Bernede. 1979. “Suggested methods for determining the uniaxial compressive strength and deformability of rock materials.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 16: 138–140. https://doi.org/ 10.1016/0148-9062(79)91451-7.
Bishop, A. W. 1967. “Progressive failure with special reference to the mechanism causing it.” In Proc., of the Geotechnical Conf., 142–150. Oslo, Norway: Norwegian Geotechnical Institute.
Brace, W. F., B. W. Paulding, and C. Scholz. 1966. “Dilatancy in the fracture of crystalline rocks.” J. Geophys. Res. 71 (16): 3939–3953. https://doi.org/ 10.1029/JZ071i016p03939.
Cai, M., P. K. Kaiser, Y. Tasaka, T. Maejima, H. Morioka, and M. Minami. 2004. “Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations.” Int. J. Rock Mech. Min. Sci. 41 (5): 833–847. https://doi.org/10.1016/j.ijrmms.2004.02.001.
Chen, G., W. Jiang, X. Sun, C. Zhao, and C. A. Qin. 2019. “Quantitative evaluation of rock brittleness based on crack initiation stress and complete stress–strain curves.” Bull. Eng. Geol. Environ. 78 (8): 5919–5936. https://doi.org/10.1007/s10064-019-01486-2.
Diederichs, M. S. 2007. “The 2003 Canadian geotechnical colloquium: Mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling.” Can. Geotech. J. 44 (9): 1082–1116. https://doi.org/ 10.1139/T07-033.
Diederichs, M. S., P. K. Kaiser, and E. Eberhardt. 2004. “Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation.” Int. J. Rock Mech. Min. Sci. 41 (5): 785–812. https://doi.org/10.1016/j.ijrmms.2004.02.003.
Eberhardt, E., D. Stead, and B. Stimpson. 1999. “Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression.” Int. J. Rock Mech. Min. Sci. 36: 361–380. https://doi.org/ 10.1016/S0148-9062(99)00019-4.
Eberhardt, E., D. Stead, B. Stimpson, and R. S. Read. 1998. “Identifying crack initiation and propagation thresholds in brittle rock.” Can. Geotech. J. 35 (2): 222–233. https://doi.org/ 10.1139/t97-091.
Gao, M., T. Li, and L. Meng. 2021. “An evaluation method of rock brittleness based on the prepeak crack initiation and postpeak stress drop characteristics.” Math. Probl. Eng. 2021: 5639649. https://doi.org/10.1155/2021/5639649.
Goktan, R. M., and N. G. Yilmaz. 2005. “A new methodology for the analysis of the relationship between rock brittleness index and drag pick cutting efficiency.” J. S. Afr. Inst. Min. Metall. 105 (10): 727–733.
Gregg, J. M., and D. F. Sibley. 1984. “Epigenetic dolomitization and the origin of xenotopic dolomite texture.” J. Sediment. Res. 54 (3): 908–931. https://doi.org/10.1306/212F8535-2B24-11D7-8648000102C1865D.
Hajiabdolmajid, V., and P. Kaiser. 2003. “Brittleness of rock and stability assessment in hard rock tunneling.” Tunnelling Underground Space Technol. 18 (1): 35–48. https://doi.org/ 10.1016/S0886-7798(02)00100-1.
Hetenyi, M. 1966. Handbook of experimental stress analysis. New York: Wiley.
Honda, H., and Y. Sanada. 1956. “Hardness of coal fuel.” Fuel 35 (4): 451–461.
Howell, J. V. 1960. Glossary of geology and related sciences. Washington, DC: American Geological Institute.
Hucka, V., and B. Das. 1974. “Brittleness determination of rocks by different methods.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 11 (10): 389–392. https://doi.org/ 10.1016/0148-9062(74)91109-7.
Jarvie, D. M., R. J. Hill, T. E. Ruble, and R. M. Pollastro. 2007. “Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment.” AAPG Bull. 91 (4): 475–499. https://doi.org/ 10.1306/12190606068.
Jiang, J., D. Wang, X. Han, and S. Di. 2020. “Relationship between brittleness index and crack initiation stress ratio for different rock types.” Adv. Civ. Eng. 2020: 1–12. https://doi.org/10.1155/2020/8091895.
Jin, X., S. N. Shah, J. A. Truax, and J. C. Roegiers. 2014. “A practical petrophysical approach for brittleness prediction from porosity and sonic logging in shale reservoirs.” In Proc., Annual Technical Conf. and Exhibition, Society of Petroleum Engineers. Amsterdam, The Netherlands: Society of Petroleum Engineers (SPE).
Kahraman, S., and R. Altindag. 2004. “A brittleness index to estimate fracture toughness.” Int. J. Rock Mech. Min. Sci. 41 (2): 343–348. https://doi.org/ 10.1016/j.ijrmms.2003.07.010.
Kahraman, S., O. Y. Toraman, and S. Cayirli. 2018. “Predicting the strength and brittleness of rocks from a crushability index.” Bull. Eng. Geol. Environ. 77 (4): 1639–1645. https://doi.org/ 10.1007/s10064-017-1012-9.
Lajtai, E. Z., and V. N. Lajtai. 1974. “The evolution of brittle fracture in rocks.” J. Geol. Soc. 130 (1): 1–16. https://doi.org/ 10.1144/gsjgs.130.1.0001.
Lakirouhani, A., F. Asemi, A. Zohdi, J. Medzvieckas, and R. Kliukas. 2020. “Physical parameters, tensile and compressive strength of dolomite rock samples: Influence of grain size.” J. Civ. Eng. Manage. 26 (8): 789–799. https://doi.org/10.3846/jcem.2020.13810.
Lawn, B. R., and D. B. Marshall. 1979. “Hardness, toughness, and brittleness: An indentation analysis.” J. Am. Ceram. Soc. 62 (7–8): 347–350. https://doi.org/ 10.1111/j.1151-2916.1979.tb19075.x.
Li, Q. H., M. Chen, Y. Jin, F. P. Wang, B. Hou, and B. W. Zhang. 2012. “Indoor evaluation method for shale brittleness and improvement.” Chin. J. Rock. Mech. Eng. 31 (8): 1680–1685.
Li, Y., L. Zhou, D. Li, S. Zhang, F. Tian, Z. Xie, and B. Liu. 2020. “Shale brittleness index based on the energy evolution theory and evaluation with logging data: A case study of the Guandong block.” ACS Omega 5 (22): 13164–13175. https://doi.org/10.1021/acsomega.0c01140.
Luan, X., B. Di, J. Wei, X. Li, K. Qian, J. Xie, and P. Ding. 2014. “Laboratory measurements of brittleness anisotropy in synthetic shale with different cementation.” In Proc., 2014 Society of Exploration Geophysicists Annual Meeting, 3005–3009. Denver, CO: Society of Exploration Geophysicists (SEG).
Martin, C. D., and N. A. Chandler. 1994. “The progressive fracture of Lac du Bonnet granite.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 31 (6): 643–659. https://doi.org/ 10.1016/0148-9062(94)90005-1.
Mazzullo, S. J. 1992. “Geochemical and neomorphic alteration of dolomite: A review.” Carbonates Evaporites 7 (1): 21–37. https://doi.org/ 10.1007/BF03175390.
Meng, F., H. Zhou, C. Zhang, R. Xu, and J. Lu. 2015. “Evaluation methodology of brittleness of rock based on post-peak stress–strain curves.” Rock Mech. Rock Eng. 48 (5): 1787–1805. https://doi.org/ 10.1007/s00603-014-0694-6.
Meng, Z., and J. Pan. 2007. “Correlation between petrographic characteristics and failure duration in clastic rocks.” Eng. Geol. 89 (3): 258–265. https://doi.org/ 10.1016/j.enggeo.2006.10.010.
Moghadam, A., N. B. Harris, K. Ayranci, J. S. Gomez, N. A. Angulo, and R. Chalaturnyk. 2019. “Brittleness in the Devonian horn river shale, British Columbia, Canada.” J. Nat. Gas Sci. Eng. 62: 247–258. https://doi.org/10.1016/j.jngse.2018.12.012.
Morley, A. 1944. Strength of materials, 71–72. London: Longman Green.
Munoz, H., A. Taheri, and E. K. Chanda. 2016. “Rock drilling performance evaluation by an energy dissipation based rock brittleness index.” Rock Mech. Rock Eng. 49 (8): 3343–3355. https://doi.org/ 10.1007/s00603-016-0986-0.
Nicksiar, M., and C. D. Martin. 2012. “Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks.” Rock Mech. Rock Eng. 45 (4): 607–617. https://doi.org/ 10.1007/s00603-012-0221-6.
Nicksiar, M., and C. D. Martin. 2013. “Crack initiation stress in low porosity crystalline and sedimentary rocks.” Eng. Geol. 154: 64–76. https://doi.org/ 10.1016/j.enggeo.2012.12.007.
Nouri, M., G. Khanlari, B. Rafiei, V. Sarfarazi, and M. Zaheri. 2022. “Estimation of brittleness indexes from petrographic characteristics of different sandstone types (Cenozoic and Mesozoic Sandstones), Markazi Province, Iran.” Rock Mech. Rock Eng. 55 (4): 1955–1995. https://doi.org/10.1007/s00603-021-02441-y.
Obert, L., and W. I. Duvall. 1967. Rock mechanics and the design of structures in rock. Vol. 650. New York: Wiley.
Palchik, V. 2010a. “Mechanical behavior of carbonate rocks at crack damage stress equal to uniaxial compressive strength.” Rock Mech. Rock Eng. 43 (4): 497–503. https://doi.org/ 10.1007/s00603-009-0042-4.
Palchik, V. 2010b. “Compressive stress levels at which permeability of rock mass increases.” In Proc., 6th Conf. of Institute of Mathematics and Its Applications. Modelling Permeable Rocks, 75–78. Edinburgh, UK: University of Edinburgh.
Palchik, V. 2013. “Is there link between the type of the volumetric strain curve and elastic constants, porosity, stress and strain characteristics?” Rock Mech. Rock Eng. 46 (2): 315–326. https://doi.org/ 10.1007/s00603-012-0263-9.
Palchik, V., and Y. H. Hatzor. 2002. “Crack damage stress as a composite function of porosity and elastic matrix stiffness in dolomites and limestones.” Eng. Geol. 63 (3–4): 233–245. https://doi.org/ 10.1016/S0013-7952(01)00084-9.
Pan, X. H., Y. Li, Y. Yu, and L. Huang. 2021. “A theoretical strain relationship for identifying the failure of laboratory-scale rocks under triaxial compression.” Geomech. Geoeng. 16 (2): 99–115. https://doi.org/10.1080/17486025.2019.1645362.
Protodyakonov, M. 1962. “Mechanical properties and drillability of rocks.” In Proc., 5th Symp. on Rock Mechanics. Minneapolis, MN: University of Minnesota.
Quinn, J. B., and G. D. Quinn. 1997. “Indentation brittleness of ceramics: A fresh approach.” J. Mater. Sci. 32 (16): 4331–4346. https://doi.org/ 10.1023/A:1018671823059.
Rahimzadeh Kivi, I., M. Zare-Reisabadi, M. Saemi, and Z. Zamani. 2017. “An intelligent approach to brittleness index estimation in gas shale reservoirs: A case study from a western Iranian basin.” J. Nat. Gas Sci. Eng. 44: 177–190. https://doi.org/10.1016/j.jngse.2017.04.016.
Ramsey, J. 1968. Folding and fracturing of rock. New York: McGraw-Hill.
Rickman, R., M. J. Mullen, J. E. Petre, W. V. Grieser, and D. Kundert. 2008. “A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale.” In Proc., Society of Petroleum Engineers Annual Technical Conf. and Exhibition. Houston, TX: Society of Petroleum Engineers (SPE).
Sibley, D. F., and J. M. Gregg. 1987. “Classification of dolomite rock textures.” J. Sediment. Res. 57 (6): 967–975. https://doi.org/10.1306/212F8CBA-2B24-11D7-8648000102C1865D.
Smith, T. R., and E. M. Schulson. 1994. “Brittle compressive failure of salt-water columnar ice under biaxial loading.” J. Glaciol. 40 (135): 265–276. https://doi.org/ 10.1017/S0022143000007358.
Sousa, L. M. O. 2013. “The influence of the characteristics of quartz and mineral deterioration on the strength of granitic dimensional stones.” Environ. Earth Sci. 69 (4): 1333–1346. https://doi.org/ 10.1007/s12665-012-2036-x.
Stacey, T. R. 1981. “A simple extension strain criterion for fracture of brittle rock.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 18 (6): 469–474. https://doi.org/ 10.1016/0148-9062(81)90511-8.
Tarasov, B., and Y. Potvin. 2013. “Universal criteria for rock brittleness estimation under triaxial compression.” Int. J. Rock Mech. Min. Sci. 59: 57–69. https://doi.org/ 10.1016/j.ijrmms.2012.12.011.
Tavallali, A., and A. Vervoort. 2010. “Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions.” Int. J. Rock Mech. Min. Sci. 47 (2): 313–322. https://doi.org/ 10.1016/j.ijrmms.2010.01.001.
Ündül, Ö. 2016. “Assessment of mineralogical and petrographic factors affecting petro-physical properties, strength and cracking processes of volcanic rocks.” Eng. Geol. 210: 10–22. https://doi.org/ 10.1016/j.enggeo.2016.06.001.
Ündül, Ö, F. Amann, N. Aysal, and M. L. Plötze. 2015. “Micro-textural effects on crack initiation and crack propagation of andesitic rocks.” Eng. Geol. 193: 267–275. https://doi.org/ 10.1016/j.enggeo.2015.04.024.
Wang, F. P., and J. F. Gale. 2009. “Screening criteria for shale-gas systems.” Gulf Coast Assoc. Geol. Trans. 59: 779–793.
Wang, Y., R. Watson, J. Rostami, J. Y. Wang, M. Limbruner, and Z. He. 2014. “Study of borehole stability of Marcellus shale wells in longwall mining areas.” J. Pet. Explor. Prod. Technol. 4 (1): 59–71. https://doi.org/ 10.1007/s13202-013-0083-9.
Wawersik, W. R., and C. Fairhurst. 1970. “A study of brittle rock fracture in laboratory compression experiments.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 7 (5): 561–575. https://doi.org/10.1016/0148-9062(70)90007-0.
Wei, M., F. Dai, Y. Liu, and R. Jiang. 2023. “A fracture model for assessing tensile mode crack growth resistance of rocks.” J. Rock Mech. Geotech. Eng. 15 (2): 395–411. https://doi.org/10.1016/j.jrmge.2022.03.001.
Wei, M., F. Dai, Y. Liu, A. Li, and Z. Yan. 2021. “Influences of loading method and notch type on rock fracture toughness measurements: From the perspectives of T-stress and fracture process zone.” Rock Mech. Rock Eng. 54: 4965–4986. https://doi.org/ 10.1007/s00603-021-02541-9.
Wong, R. H. C., K. T. Chau, and P. Wang. 1996. “Microcracking and grain size effect in Yuen Long marbles.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 33 (5): 479–485. https://doi.org/ 10.1016/0148-9062(96)00007-1.
Xia, Y. J., L. C. Li, C. A. Tang, X. Y. Li, S. Ma, and M. Li. 2017. “A new method to evaluate rock mass brittleness based on stress–strain curves of class I.” Rock Mech. Rock Eng. 50 (5): 1123–1139. https://doi.org/ 10.1007/s00603-017-1174-6.
Xu, C., L. Xue, Y. Cui, M. Zhai, and F. Bu. 2023. “Critical slowing down phenomenon for predicting the failure of solid rocks and cement mortar materials: Insight from acoustic emission multiparameters.” Constr. Build. Mater. 399: 132523. https://doi.org/10.1016/j.conbuildmat.2023.132523.
Xu, R., Z. Li, and Y. Jin. 2022. “Brittleness effect on acoustic emission characteristics of rocks based on a new brittleness evaluation index.” Int. J. Geomech. 22 (10): 04022185. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002562.
Xue, L., S. Qin, Q. Sun, Y. Wang, L. M. Lee, and W. Li. 2014. “A study on crack damage stress thresholds of different rock types based on uniaxial compression tests.” Rock Mech. Rock Eng. 47 (4): 1183–1195. https://doi.org/ 10.1007/s00603-013-0479-3.
Yagiz, S. 2009. “Assessment of brittleness using rock strength and density with punch penetration test.” Tunnelling Underground Space Technol. 24 (1): 66–74. https://doi.org/ 10.1016/j.tust.2008.04.002.
Yarali, O., and S. Kahraman. 2011. “The drillability assessment of rocks using the different brittleness values.” Tunnelling Underground Space Technol. 26 (2): 406–414. https://doi.org/ 10.1016/j.tust.2010.11.013.
Yilmaz, N. G., Z. Karaca, R. M. Goktan, and C. Akal. 2009. “Relative brittleness characterization of some selected granitic building stones: Influence of mineral grain size.” Constr. Build. Mater. 23: 370–375. https://doi.org/ 10.1016/j.conbuildmat.2007.11.014.
Zhai, M., L. Xue, H. Chen, C. Xu, and Y. Cui. 2021. “Effects of shear rates on the damaging behaviors of layered rocks subjected to direct shear: Insights from acoustic emission characteristics.” Eng. Fract. Mech. 258: 108046. https://doi.org/10.1016/j.engfracmech.2021.108046.
Zhang, D., P. G. Ranjith, and M. S. A. Perera. 2016. “The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: A review.” J. Pet. Sci. Eng. 143: 158–170. https://doi.org/ 10.1016/j.petrol.2016.02.011.
Zhong, C., L. Wu, S. Li, J. T. Zhou, and Z. Q. Li. 2023. “A novel energy-based method to evaluate layered rock brittleness.” Int. J. Geomech. 23 (1): 04022249. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002604.
Zhou, H., J. Chen, J. Lu, Y. Jiang, and F. Meng. 2018. “A new rock brittleness evaluation index based on the internal friction angle and class I stress–strain curve.” Rock Mech. Rock Eng. 51 (7): 2309–2316. https://doi.org/10.1007/s00603-018-1487-0.
Zohdi, A., F. Asemi, and A. Lakirouhani. 2017. “Dolomitization model of the Soltanieh formation in the south-west of Zanjan.” Sci. Q. J. Geosci. 26 (104): 17–28. https://doi.org/ 10.22071/gsj.2017.50164.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 24Issue 5May 2024

History

Received: Apr 21, 2023
Accepted: Nov 28, 2023
Published online: Mar 5, 2024
Published in print: May 1, 2024
Discussion open until: Aug 5, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Dept. of Civil Engineering, School of Engineering, Kharazmi Univ., Tehran 15719-14911, Iran (corresponding author). ORCID: https://orcid.org/0000-0003-3090-1689. Email: [email protected]
Faculty of Engineering, Dept. of Civil Engineering, Univ. of Zanjan, Zanjan 45371-38791, Iran. ORCID: https://orcid.org/0000-0001-5449-8420.
Mohsen Nicksiar, Ph.D.
SNC-Lavalin Inc., Burnaby, BC V5H 3Z7, Canada.
Afshin Zohdi, Ph.D.
Faculty of Science, Dept. of Geology, Univ. of Zanjan, Zanjan 45371-38791, Iran.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share