Abstract

The deep soil mixing (DSM) method is used to improve the mechanical and/or hydraulic properties of soils. The DSM method refers to an in situ mixing of soil, water, and hydraulic binder without excavation. After describing the specific microstructure of DSM materials compared with soils or concrete, four porosity–permeability analytical models from literature and based on microstructural parameters (i.e., porosity and pore-size distribution derived from mercury intrusion porosimetry) were applied to predict the water permeability (K) of soil–cement mixtures. After comparing the estimated permeabilities (Kest) with the experimental measurements of such a parameter (Kexp) using a triaxial cell, an indicator parameter A (=Kest/Kexp) was proposed to evaluate the ability of each model to fit the water circulation in DSM material. By calculating the average ratio 〈A〉 from the 24 materials in the studied database, three of the four applied models satisfactorily estimated the water permeability of the studied DSM materials. To reach an 〈A〉 value closer to 1, an extension of the Aït-Mokhtar's model, initially developed for cementitious mortars, was proposed by considering the specificities of the DSM materials. If previous models used only the contribution of nanopores less than 100 nm to the water flow, the extended model considered the contribution of all pore populations in the permeability calculation. Such an approach resulted in a significant improvement in the matching between the calculated and measured permeabilities.

Get full access to this article

View all available purchase options and get full access to this article.

References

AFGC (SETRA). 2004. Conception des bétons pour une durée de vie donnée des ouvrages–Indicateurs de durabilité. Documents scientifiques et techniques. France: AFGC.
AFNOR (Association Française de Normalisation). 1992. Analyse granulométrique des sols - Méthode par sédimentation. Normes nationales et documents normatifs nationaux. NF P94-057. La Plaine Saint-Denis, France: AFNOR.
AFNOR (Association Française de Normalisation). 1993. Détermination des limites d’Atterberg - Limite de liquidité à la coupelle - Limite de plasticité au rouleau. Normes nationales et documents normatifs nationaux. NF P 94-051. La Plaine Saint-Denis, France: AFNOR.
AFNOR (Association Française de Normalisation). 1995. Identification granulométrique - Méthode de tamisage par voie humide. Normes nationales et documents normatifs nationaux. XP P 94-041. La Plaine Saint-Denis, France: AFNOR.
AFNOR (Association Française de Normalisation). 1998. Mesure de la capacité d’adsorption de bleu de méthylène d’un sol ou matériau rocheux. Détermination de la valeur de bleu méthylène d’un sol ou d’un matériau rocheux par l’essai à la tâche. Normes nationales et documents normatifs nationaux. NF P 94-068. La Plaine Saint-Denis, France: AFNOR.
AFNOR (Association Française de Normalisation). 2005. Essais de laboratoire sur les sols - Partie 11 : Détermination de perméabilité à charge constante et à charge variable décroissante. Normes nationales et documents normatifs nationaux. XP CEN ISO/TS 17892-11. La Plaine Saint-Denis, France: AFNOR.
Aït-Mokhtar, A., O. Amiri, and S. Sammartinot. 1999. “Analytic modelling and experimental study of the porosity and permeability of a porous medium—application to cement mortars and granitic rock.” Mag. Concr. Res. 51 (6): 391–396. https://doi.org/10.1680/macr.1999.51.6.391.
Baroghel-Bouny, V. 2005a. “Nouvelle approche de la durabilité du béton. Indicateur de durabilité.” Construction et travaux publics – Les superstructures du bâtiment, Techniques de l’Ingénieur, C2245 V1. https://doi.org/10.51257/a-v1-c2245.
Baroghel-Bouny, V. 2005b. “Nouvelle approche de la durabilité du béton. Méthodologie et exemples.” Construction et travaux publics – Les superstructures du bâtiment, Techniques de l’Ingénieur, C2246 V1. https://doi.org/10.51257/a-v1-c2246.
Carman, P. C. 1937. “Fluid flow through granular beds.” Trans. Inst. Chem. Eng. 15: 32–48.
Charlaix, E., E. Guyon, and S. Roux. 1987. “Permeability of a random array of fractures of widely varying apertures.” Transp. Porous Media 2 (1): 31–43. https://doi.org/10.1007/BF00208535.
Cook, R. A., and K. C. Hover. 1999. “Mercury porosimetry of hardened cement pastes.” Cem. Concr. Res. 29: 933–943. https://doi.org/10.1016/S0008-8846(99)00083-6.
Deng, Y., X. Yue, S. Liu, Y. Chen, and D. Zhang. 2015. “Hydraulic conductivity of cement-stabilized marine clay with metakaolin and its correlation with pore size distribution.” Eng. Geol. 193: 146–152. https://doi.org/10.1016/j.enggeo.2015.04.018.
Denies, N., N. Huybrechts, F. De Cock, B. Lameire, A. Vervoort, G. Van Lysebetten, and J. Maertens. 2012. “Soil Mix walls as retaining structures –mechanical characterization.” In Proc., of TC 211 Int. Symp. & Short Courses “Recent Research, Advances & Execution Aspects of Ground Improvement Works.” London: International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE).
De Vos, L., M. De Beukelaer-Dossche, L. Vincke, E. Dupont, K. Duyck, N. Huybrechts, and N. Denies. 2019. “Application of soil mixing (CSM) in stiff clay for dike stabilization.” In Proc., 17th Geotechnical Engineering foundation of the future. London: International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE).
Dong, J.-J., J.-Y. Hsu, W.-J. Wu, T. Shimamoto, J.-H. Hung, E.-C. Yeh, Y.-H. Wu, and H. Sone. 2010. “Stress-dependence of the permeability and porosity of sandstone and shale from TCDP hole-A.” Int. J. Rock Mech. Min. Sci. 47 (7): 1141–1157. https://doi.org/10.1016/j.ijrmms.2010.06.019.
Farquharson, J., M. J. Heap, N. R. Varley, P. Baud, and T. Reuschlé. 2015. “Permeability and porosity relationships of edifice-forming andesites: A combined field and laboratory study.” J. Volcanol. Geotherm. Res. 297: 52–68. https://doi.org/10.1016/j.jvolgeores.2015.03.016.
Gamage, K., E. Screaton, B. Bekins, and I. Aiello. 2011. “Permeability–porosity relationships of subduction zone sediments.” Mar. Geol. 279 (1–4): 19–36. https://doi.org/10.1016/j.margeo.2010.10.010.
Garboczi, E. J. 1990. “Permeability, diffusivity, and microstructural parameters: A critical review.” Cem. Concr. Res. 20 (4): 591–601. https://doi.org/10.1016/0008-8846(90)90101-3.
Ghabezloo, S., J. Sulem, and J. Saint-Marc. 2009. “Evaluation of a permeability–porosity relationship in a low-permeability creeping material using a single transient test.” Int. J. Rock Mech. Min. Sci. 46 (4): 761–768. https://doi.org/10.1016/j.ijrmms.2008.10.003.
Guimond-Barrett, A. 2013. “Influence of mixing and curing conditions on the characteristics and durability of soils stabilized by deep mixing.” Ph.D. thesis, Dept. of Geotechnical Engineering, Univ. du Havre.
Helson, O. 2017. “Thermo-hydro-mechanical behavior and durability of soilcretes: influence of formulation parameters and exposure conditions.” Ph.D. thesis, Dept. of Civil Engineering, Univ. de Cergy-Pontoise.
Helson, O., J. Eslami, A.-L. Beaucour, A. Noumowe, and P. Gotteland. 2018. “Durability of soil mix material subjected to wetting/drying cycles and external sulfate attacks.” Constr. Build. Mater. 192: 416–428. https://doi.org/10.1016/j.conbuildmat.2018.10.095.
Henderson, N., J. C. Brêttas, and W. F. Sacco. 2010. “A three-parameter Kozeny–Carman generalized equation for fractal porous media.” Chem. Eng. Sci. 65 (15): 4432–4442. https://doi.org/10.1016/j.ces.2010.04.006.
Katz, A. J., and A. H. Thompson. 1987. “Prediction of rock electrical conductivity from mercury injection measurements.” J. Geophys. Res. 92 (B1): 599–607. https://doi.org/10.1029/JB092iB01p00599.
Kozeny, J. 1927. “Ueber kapillare Leitung des Wassers im Boden.” Sitzungsber Akad. Wiss., Wien. 136 (2a): 271–306.
Lade, P. V., C. D. Liggio, and J. A. Yamamura. 1998. “Effects of non-plastic fines on minimum and maximum void ratios of sand.” Geotech. Test. J. 21 (4): 336–347.
Le Kouby, A., M. Duc, J. Marino-Paredes, and S. Fanelli. 2016. “Multi-scale approach of clay soil treatment by the Deep Soil Mixing method.” In Proc., 8th National Days of Geotechnics and Engineering Geology. Vandœuvre-lès-Nancy, France: Lemta.
Le Kouby, A., M. Duc, F. Szymkiewicz, and S. Shen. 2018. “Impact of soil type, cement content, water content on mechanical and porosity properties on cement treated materials.” In Proc., 9th National Days of Geotechnics and Engineering Geology. Créteil, France: Université Paris-Est.
Le Kouby, A., L. Saussaye, and M. Duc. 2020. “Impact of physical properties of soil on mechanical properties of soil cement treated materials.” In Proc., 10th National Days of Geotechnics and Engineering Geology. France: CFMS.
Nishiyama, N., and T. Yokoyama. 2014. “Estimation of permeability of sedimentary rocks by applying water-expulsion porosimetry to Katz and Thompson model.” Eng. Geol. 177: 75–82. https://doi.org/10.1016/j.enggeo.2014.05.016.
Nokken, M. R., and R. D. Hooton. 2007. “Using pore parameters to estimate permeability or conductivity of concrete.” Mater. Struct. 41 (1): 1–16. https://doi.org/10.1617/s11527-006-9212-y.
Nooruddin, H. A., and M. E. Hossain. 2011. “Modified Kozeny–Carmen correlation for enhanced hydraulic flow unit characterization.” J. Pet. Sci. Eng. 80 (1): 107–115. https://doi.org/10.1016/j.petrol.2011.11.003.
Patouillard, S., L. Saussaye, E. Durand, N. Manceau, A. Le Kouby, and A. Coulet. 2019. “Deep soil mixing feedback in Loire levees.” In Proc., Maritime and River Dykes for Flood Protection 3rd Colloquium. Grenoble, France: France Digues.
Ranaivomanana, H., A. Razakamanantsoa, and O. Amiri. 2017. “Permeability prediction of soils including degree of compaction and microstructure.” Int. J. Geomech. 17 (4): 04016107. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000792.
Reiffsteck, P., P.-T. Nguyen Pham, and J. Arbault. 2017. “Influence de la répartition granulométrique sur le comportement mécanique d’un sol.” Bulletin des Laboratoires des Ponts et Chaussées 268–269: 83–104.
Rodriguez, E., F. Giacomelli, and A. Vazquez. 2004. “Permeability-porosity relationship in RTM for different fiberglass and natural reinforcements.” J. Compos. Mater. 38 (3): 259–268. https://doi.org/10.1177/0021998304039269.
Roy, D. M., P. W. Brown, D. Ski, B. E. Scheetz, and W. May. 1993. Concrete microstructure: Porosity and permeability. Report of Strategic Highway Research, Program (SHRP-C-628). Washington, DC: National Research Council (NRC).
Saar, M. O., and M. Manga. 1999. “Permeability-porosity relationship in vesicular basalts.” Geophys. Res. Lett. 26 (1): 111–114. https://doi.org/10.1029/1998GL900256.
Saussaye, L., A. Le Kouby, F. Mathieu, and J. F. Mosser. 2018. “Reinforcement of levees by Deep Soil Mixing technique – case history of tours Loire area.” In Proc., 9th National Days of Geotechnics and Engineering Geology. Créteil, France: Université Paris-Est.
Szymkiewicz, F. 2011. “Evaluation of the mechanical properties of the Soil-Mixing material.” Ph.D. thesis, Dept. of Geotechnical Engineering, Univ. Paris-Est.
Thompson, A. H., A. J. Katz, and C. E. Krohn. 1987. “The microgeometry and transport properties of sedimentary rock.” Adv. Phys. 36 (5): 625–694. https://doi.org/10.1080/00018738700101062.
Tran-Nguyen, H. H., L. P. Le, B. K. Le, and H. M. T. Ly. 2018. “Field trials on the soil cement mixing technology to reinforce earth levees in the Mekong delta, Vietnam.” ASEAN Eng. J. 8 (1): 14–26.
Van Lysebetten, G., A. Vervoort, J. Maertens, and N. Huybrechts. 2014. “Discrete element modeling for the study of the effect of soft inclusions on the behavior of soil mix material.” Comput. Geotech. 55: 342–351. https://doi.org/10.1016/j.compgeo.2013.09.023.
Zheng, J., L. Zheng, H.-H. Liu, and Y. Ju. 2015. “Relationships between permeability, porosity and effective stress for low-permeability sedimentary rock.” Int. J. Rock Mech. Min. Sci. 78: 304–318. https://doi.org/10.1016/j.ijrmms.2015.04.025.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 23Issue 7July 2023

History

Received: Sep 25, 2022
Accepted: Dec 13, 2022
Published online: Apr 25, 2023
Published in print: Jul 1, 2023
Discussion open until: Sep 25, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, GERS/SRO Laboratory, Univ. Gustave Eiffel, 14-20 boulevard Newton, 77447 Marne-la-Vallée, France (corresponding author). ORCID: https://orcid.org/0000-0002-2764-5066. Emails: [email protected]; [email protected]
Research Fellow, GERS/SRO Laboratory, Univ. Gustave Eiffel, 14-20 boulevard Newton, 77447 Marne-la-Vallée, France. ORCID: https://orcid.org/0000-0002-6480-4054. Email: [email protected]
Research Fellow, GERS/SRO Laboratory, Univ. Gustave Eiffel, 14-20 boulevard Newton, 77447 Marne-la-Vallée, France. ORCID: https://orcid.org/0000-0002-3316-2204. Email: [email protected]
Jeanne-Sylvine Guedon, Ph.D. [email protected]
Engineer, GERS/SRO Laboratory, Univ. Gustave Eiffel, 14-20 boulevard Newton, 77447 Marne-la-Vallée, France. Email: [email protected]
François Lansac [email protected]
Assistant Engineer, GERS/SRO Laboratory, Univ. Gustave Eiffel, 14-20 boulevard Newton, 77447 Marne-la-Vallée, France. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Efficiency Evaluation of Deep Soil Mixing Method in Stiff Clayey Soils: A Comprehensive Field Study, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-9893, 24, 11, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share