Abstract

The strength behavior of rocks is a question of complex determination. The Hoek–Brown failure criterion for rock masses is the currently accepted solution to this problem and has been applied to a large number of projects worldwide. However, the estimation of Hoek–Brown parameters is directly dependent on complex and time-consuming tests (e.g., triaxial tests), demanding excessive investments, and complicated analysis. This paper proposes a method to calculate the Hoek–Brown parameters and derive the nonlinear failure envelope of distinct types of artificially cemented materials (where the integrity of the samples is ensured), comparing these results with real laboratory data. The method utilizes basic tests, such as unconfined compression tests and Brazilian tests, to estimate the maximum shear strength of materials in triaxial tests with effective confining pressures up to 400 kPa. The proposed methodology presents an accurate and conservative fit for the experimental strength results, indicating the applicability of the approach to a wide range of artificially cemented materials without the need to perform triaxial tests or any other elaborate and time-consuming procedures.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data used during the study are available from the corresponding author by request.

References

Aladejare, A. E., and Y. Wang. 2019. “Probabilistic characterization of Hoek–Brown constant mi of rock using Hoek’s guideline chart, regression model and uniaxial compression test.” Geotech. Geol. Eng. 37 (6): 5045–5060. https://doi.org/10.1007/s10706-019-00961-7.
Arshadnejad, S., and N. Nick. 2016. “Empirical models to evaluate of ‘mi’ as an intact rock constant in the Hoek–Brown rock failure criterion.” In Proc., 19th Southeast Asian Geotechnical Conf. and 2nd AGSSEA Conf., 943–948. Kuala Lumpur, Malaysia: Association of Geotechnical Societies in Southeast Asia (AGSSEA).
Bachus, R. C., G. W. Clough, N. Sitar, N. Shafii-Rad, J. Crosby, and P. Kaboli. 1981. Behavior of weakly cemented soil slopes under static and seismic loading conditions. John A. Blume Earthquake Engineering Center Rep. No. 52. Stanford, CA: Dept. of Civil and Environmental Engineering, Stanford Univ.
Consoli, N. C. 2014. “A method proposed for the assessment of failure envelopes of cemented sandy soils.” Eng. Geol. 169: 61–68. https://doi.org/10.1016/j.enggeo.2013.11.016.
Consoli, N. C., M. B. Corte, and L. Festugato. 2012a. “Key parameter for tensile and compressive strength of fibre-reinforced soil–lime mixtures.” Geosynth. Int. 19 (5): 409–414. https://doi.org/10.1680/gein.12.00026.
Consoli, N. C., R. C. Cruz, M. F. Floss, and L. Festugato. 2010. “Parameters controlling tensile and compressive strength of artificially cemented sand.” J. Geotech. Geoenviron. Eng. 136 (5): 759–763. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000278.
Consoli, N. C., L. da Silva Lopes, Jr., B. S. Consoli, and L. Festugato. 2014. “Mohr–Coulomb failure envelopes of lime-treated soils.” Géotechnique 64 (2): 165–170. https://doi.org/10.1680/geot.12.P.168.
Consoli, N. C., L. Festugato, S. B. Consoli, and L. da Silva Lopes, Jr. 2015. “Assessing failure envelopes of soil–fly ash–lime blends.” J. Mater. Civ. Eng. 27 (5): 1–8. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001134.
Consoli, N. C., D. Foppa, L. Festugato, and K. S. Heineck. 2007. “Key parameters for strength control of artificially cemented soils.” J. Geotech. Geoenviron. Eng. 133 (2): 197–205. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197).
Consoli, N. C., A. D. R. Johann, E. A. Gauer, V. R. dos Santos, R. L. Moretto, and M. B. Corte. 2012b. “Key parameters for tensile and compressive strength of silt–lime mixtures.” Géotech. Lett. 2 (3): 81–85. https://doi.org/10.1680/geolett.12.00014.
Consoli, N. C., R. R. Moraes, and L. Festugato. 2013. “Variables controlling strength of fibre-reinforced cemented soils.” Proc. Inst. Civ. Eng. Ground Improv. 166: 221–232. https://doi.org/10.1680/grim.12.00004.
Consoli, N. C., R. A. Q. Samaniego, and N. M. K. Villalba. 2016. “Durability, strength, and stiffness of dispersive clay–lime blends.” J. Mater. Civ. Eng. 28 (11): 04016124. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001632.
Consoli, N. C., A. Viana da Fonseca, R. C. Cruz, and K. S. Heineck. 2009. “Fundamental parameters for the stiffness and strength control of artificially cemented sand.” J. Geotech. Geoenviron. Eng. 135 (9): 1347–1353. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000008.
da Silva Lopes, L., Jr. 2011. Metodologia de Previsão do Comportamento Mecânico de Solos Tratados com Cal. [In Portuguese.] Porto Alegre, Brazil: Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul.
Eberhardt, E. 2012. “The Hoek–Brown failure criterion.” Rock Mech. Rock Eng. 45 (6): 981–988. https://doi.org/10.1007/s00603-012-0276-4.
Floss, M. F. 2012. “Parâmetros de controle da resistência e rigidez de solos granulares artificialmente cimentados.” [In Portuguese.] Ph.D. thesis, Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul.
Fredlund, D. G., Anqing Xing, M. D. Fredlund, and S. L. Barbour. 2011. “The relationship of the unsaturated soil shear strength to the soil-water characteristic curve.” Can. Geotech. J. 33 (3): 440–448. https://doi.org/10.1139/t96-065.
Hirai, H., M. Takahashi, and M. Yamada. 1989. “An elastic–plastic constitutive model for the behaviour of improved sandy soils.” Soils Found. 29 (2): 69–84. https://doi.org/10.3208/sandf1972.29.2_69.
Hoek, E., and E. T. Brown. 1980. “Empirical strength criterion for rock masses.” J. Geotech. Eng. Div. ASCE 106 (9): 1013–1035. https://doi.org/10.1016/0148-9062(81)90766-x.
Jaeger, J. C., N. G. W. Cook, and R. W. Zimmerman. 2007. Fundamentals of rock mechanics, practice of intramedullary locked nails: New developments in techniques and applications. Hoboken, NJ: Blackwell.
Prietto, P. D. M. 1996. “Estudo do comportamento mecânico de um solo artificialmente cimentado.” [In Portuguese.] Ph.D., M.Sc. thesis, Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul.
Rios, S., and A. Viana da Fonseca. 2013. “Porosity/cement index to evaluate geomechanical properties of an artificial cemented soil.” In Proc., of the 18th Int. Conf. on Soil Mechanics and Geotechnical Engineering, 2589–2592.
Sachetti, S. A. 2014. “Nova Abordagem para Previsão de Parâmetros de Resistência ao. Cisalhamento de uma Areia Artificialmente Cimentada.” [In Portuguese.] M.Sc. thesis, Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul.
Samaniego, R. A. Q. 2015. “Estabilização de um solo dispersivo com adição de cal.” [In Portuguese.] M.Sc. thesis, Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul.
Saroglou, H., and G. Tsiambaos. 2008. “A modified Hoek–Brown failure criterion for anisotropic intact rock.” Int. J. Rock Mech. Min. Sci. 45 (2): 223–234. https://doi.org/10.1016/j.ijrmms.2007.05.004.
Schnaid, F., P. D. M. Prietto, and N. C. Consoli. 2001. “Characterization of cemented sand in triaxial compression.” J. Geotech. Geoenviron. Eng. 127 (10): 857–868. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(857).
Specht, L. P. 2000. “Comportamento de misturas solo–cimento–fibra submetidas a carregamentos estáticos e dinâmicos visando a pavimentação.” [In Portuguese.] M.Sc. thesis, Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul.
Velázquez, L. E. G. 2016. “A influência da umidade de compactação na durabilidade, rigidez e resistência de um solo fino artificialmente cimentado.” [In Portuguese.] M.Sc. thesis, Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 24Issue 3March 2024

History

Received: Jul 14, 2022
Accepted: Aug 8, 2023
Published online: Dec 19, 2023
Published in print: Mar 1, 2024
Discussion open until: May 19, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Research Fellow, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-190, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-8732-7852. Email: [email protected]
Research Assistant, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-190, Brazil. ORCID: https://orcid.org/0000-0002-0133-8308. Email: [email protected]
Ph.D. Candidate, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-190, Brazil. ORCID: https://orcid.org/0000-0002-3804-1743. Email: [email protected]
Nilo Cesar Consoli [email protected]
Associate Editor, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-190, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share