Technical Papers
Aug 21, 2024

3D Numerical Analysis of a Geogrid-Reinforced Piled Embankment: High-Speed Railway

Publication: International Journal of Geomechanics
Volume 24, Issue 11

Abstract

A full-scale experimental geosynthetic-reinforced piled embankment (GRPE) and its numerical back analysis are presented in this article. The site is in Virvée (France) and is part of the new South Europe Atlantic high-speed line project. A GRPE system using geosynthetics with high tensile stiffness (≥10,000 kN/m) was proposed as an optimized solution to replace a classical pile-supported embankment (PE). Based on full-scale tests, three-dimensional finite-element models are considered to simulate both GRPE and PE solutions. The numerical results obtained are presented in comparison with in situ measurements. Settlements, pile stresses, and the geosynthetic strains are investigated. Then, a parametric study was conducted for the GRPE system to evaluate the influences of pile net spacing, geogrid tensile stiffness, and different numbers of high to relatively low tensile stiffness geosynthetic layers on the load transfer performance. The results show that the geosynthetic number of layers has less impact for the high tensile stiffness cases on the system settlement and load transfer efficiency. The use of a double-layer geosynthetic reinforcement with high tensile stiffness enhances the overall performance of the geosynthetic-reinforced piled embankment.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors gratefully acknowledge the financial support provided by the China Scholarship Council (ID: 201908070075). The laboratory 3SR is part of the LabEx Tec 21 (Investissement d’avenir—grant agreement n. ANR-11-LABX-0030).

Notation

The following symbols are used in this paper:
a
pile diameter in the simulated cross section (m);
Cc
compression index (−);
c
cohesion (Pa);
E
Young’s modulus (Pa);
EL
load transfer efficiency (−);
EM
pressiometric modulus (Pa);
ET
settlement efficiency (−);
E50ref
secant stiffness in standard drained triaxial test (Pa);
Eoedref
tangent stiffness for primary oedometer loading (Pa);
Eurref
unloading/reloading stiffness (Pa);
eint
initial void ratio (−);
e0
void ratio (−);
H
embankment fill height (m);
J
geogrid tensile stiffness (N/m);
K0
coefficient of lateral earth pressure (−);
k
soil permeability (m/s);
m
power for stress-level dependency of stiffness (−);
nJ
number of geosynthetic/geogrid layers (−);
pl*
limit pressure (pressiometric test) (Pa);
Q
applied load on the embankment (N);
Qp
load carried by piles (N);
qc
cone resistance (Pa);
s
pile net spacing (m);
sp
preconsolidation pressure (Pa);
T0
embankment settlement without reinforcement (m);
Tr
embankment settlement with reinforcement (m);
W
embankment weight (N);
x/y/z
coordinate system directions (−);
ΔT
differential settlement (m);
γ
soil unit weight (N/m3);
ν
Poisson’s ratio (−);
φ
friction angle (°);
ψ
dilatancy angle (°); and
ω
soil moisture content (−).

References

Aqoub, K., M. Mohamed, and T. Sheehan. 2020. “Quantitative analysis of shallow unreinforced and reinforced piled embankments with different heights subject to cyclic loads: Experimental study.” Soil Dyn. Earthquake Eng. 138: 106277. https://doi.org/10.1016/j.soildyn.2020.106277.
ASIRI (Amélioration des Sols par Inclusions Rigides). 2012. Recommandations pour la conception, le dimensionnement, l’exécution et le contrôle de l’amélioration des sols de fondation par inclusions rigides. Paris: Presses des Ponts.
Bhasi, A., and K. Rajagopal. 2015. “Numerical study of basal reinforced embankments supported on floating/end bearing piles considering pile-soil interaction.” Geotext. Geomembr. 43 (6): 524–536. https://doi.org/10.1016/j.geotexmem.2015.05.003.
Borges, J. L., and M. S. Gonçalves. 2016. “Jet-grout column-reinforced soft soils incorporating multilayer geosynthetic-reinforced platforms.” Soils Found. 56 (1): 57–72. https://doi.org/10.1016/j.sandf.2016.01.005.
Breysse, D., H. Niandou, S. Elachachi, and L. Houy. 2005. “A generic approach to soil–structure interaction considering the effects of soil heterogeneity.” Géotechnique 55 (2): 143–150. https://doi.org/10.1680/geot.2005.55.2.143.
Briançon, L., and B. Simon. 2012. “Performance of pile-supported embankment over soft soil: Full-scale experiment.” J. Geotech. Geoenviron. Eng. 138 (4): 551–561. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000561.
Briançon, L., and B. Simon. 2017. “Pile-supported embankment over soft soil for a high-speed line.” Geosynth. Int. 24 (3): 293–305.
BSI (British Standards Institution). 2010. Code of practice for strengthened/reinforced soils and other fills. London: BSI.
Carlsson, B. 1987. Reinforced soil, principles for calculation. Linköping, Sweden: Terratema AB.
EBGEO (Empfehlungen für den Entwurf und die Berechnung von Erdkörpern mit Bewehrungen aus Geokunststoffen). 2010. Empfehlungen für den Entwurf und die Berechnung von Erdkörpern mit Bewehrungen aus Geokunststoffen. Berlin: Deutsche Gesellschaft für Geotechnik e.V.
Fattah, M. Y., B. S. Zabar, and H. A. Hassan. 2015. “Soil arching analysis in embankments on soft clays reinforced by stone columns.” Struct. Eng. Mech. 56 (4): 507–534.
Filz, G. M., J. A. Sloan, M. P. McGuire, M. Smith, and J. Collin. 2019. “Settlement and vertical load transfer in column-supported embankments.” J. Geotech. Geoenviron. Eng. 145 (10): 4019083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002130.
Girout, R., M. Blanc, D. Dias, and L. Thorel. 2014. “Numerical analysis of a geosynthetic-reinforced piled load transfer platform--validation on centrifuge test.” Geotex. Geomem. 42 (5): 525–539. https://doi.org/10.1016/j.geotexmem.2014.07.012.
Ghosh, B., B. Fatahi, and H. Khabbaz. 2017. “Analytical solution to analyze LTP on column-improved soft soil considering soil nonlinearity.” Int. J. Geomech. 17 (3): 4016082. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000751.
Guo, X., T. A. Pham, and D. Dias. 2022. “Probabilistic analysis of geosynthetic-reinforced and pile-supported embankments.” Comput. Geotech. 142: 104595. https://doi.org/10.1016/j.compgeo.2021.104595.
Han, J., and M. A. Gabr. 2002. “Numerical analysis of geosynthetic-reinforced and pile-supported earth platforms over soft soil.” J. Geotech. Geoenviron. Eng. 128 (1): 44–53. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:1(44).
Hosseinpour, I., C. Soriano, and M. S. S. Almeida. 2019. “A comparative study for the performance of encased granular columns.” J. Rock Mech. Geotech. Eng. 11 (2): 379–388. https://doi.org/10.1016/j.jrmge.2018.12.002.
Huang, Z., K. Ziotopoulou, and G. M. Filz. 2019. “3D numerical limiting case analyses of lateral spreading in a column-supported embankment.” J. Geotech. Geoenviron. Eng. 145 (11): 04019096. https://doi.org/10.1061/(asce)gt.1943-5606.0002162.
Hussein, M. G., and M. A. Meguid. 2016. “A three-dimensional finite element approach for modeling biaxial geogrid with application to geogrid-reinforced soils.” Geotext. Geomembr. 44 (3): 295–307. https://doi.org/10.1016/j.geotexmem.2015.12.004.
Jaky, J. 1944. “The coefficient of earth pressure at rest.” J. Soc. Hung. Architects Eng. 355–358.
Kempfert, H. G., C. Gobel, D. Alexiew, and C. Heitz. 2004. “German recommendations for soil reinforcement above pile-elements.” In Proc., EUROGeo3, Third Geosynthetic Conf., 279–283. Reston, VA: ASCE.
King, D. J., A. Bouazza, J. R. Gniel, R. K. Rowe, and H. H. Bui. 2017. “Load-transfer platform behaviour in embankments supported on semi-rigid columns: Implications of the ground reaction curve.” Can. Geotech. J. 54 (8): 1158–1175. https://doi.org/10.1139/cgj-2016-0406.
Le Hello, B., and P. Villard. 2009. “Embankments reinforced by piles and geosynthetics—Numerical and experimental studies dealing with the transfer of load on the soil embankment.” Eng. Geol. 106 (1–2): 78–91. https://doi.org/10.1016/j.enggeo.2009.03.001.
Leonardi, G., D. Lo Bosco, R. Palamara, and F. Suraci. 2020. “Finite element analysis of geogrid-stabilized unpaved roads.” Sustainability 12 (5): 1929. https://doi.org/10.3390/su12051929.
Meena, N. K., S. Nimbalkar, B. Fatahi, and G. Yang. 2020. “Effects of soil arching on behavior of pile-supported railway embankment: 2D FEM approach.” Comput. Geotech. 123: 103601. https://doi.org/10.1016/j.compgeo.2020.103601.
Nunez, M. A., L. Briançon, and D. Dias. 2013. “Analyses of a pile-supported embankment over soft clay: Full-scale experiment, analytical and numerical approaches.” Eng. Geol. 153: 53–67. https://doi.org/10.1016/j.enggeo.2012.11.006.
Pham, T. A., Q. A. Tran, P. Villard, and D. Dias. 2021. “Geosynthetic-reinforced pile-supported embankments − 3D discrete numerical analyses of the interaction and mobilization mechanisms.” Eng. Struct. 242: 112337. https://doi.org/10.1016/j.engstruct.2021.112337.
Pham, T. A. 2020. “Analysis of geosynthetic-reinforced pile-supported embankment with soil-structure interaction models.” Comput. Geotech. 121: 103438. https://doi.org/10.1016/j.compgeo.2020.103438.
Pham, T. A., and D. Dias. 2021a. “Comparison and evaluation of analytical models for the design of geosynthetic-reinforced and pile-supported embankments.” Geotext. Geomembr. 49 (3): 528–549. https://doi.org/10.1016/j.geotexmem.2020.11.001.
Pham, T. A., and D. Dias. 2021b. “3D numerical study of the performance of geosynthetic-reinforced and pile-supported embankments.” Soils Found. 61 (5): 1319–1342
Pham, T. A., K. Wijesuriya, and D. Dias. 2022. “Analytical model for the design of piled embankments considering cohesive soils.” Geosynth. Int. 29 (4): 369–388.
Plaxis 3D. 2018. “PLAXIS 3D 2018—Reference manual.” Accessed Octorber 27, 2021. https://www.plaxis.com/support/manuals/plaxis-3d-manuals/.
Riyad, A. S. M., F. B. Ferreira, B. Indraratna, and T. Ngo. 2021. “A critical review on the performance of pile-supported rail embankments under cyclic loading: Numerical modeling approach.” Sustainability 13 (2509): 243–256.
Rowe, R. K., and K.-W. Liu. 2015. “Three-dimensional finite element modelling of a full-scale geosynthetic-reinforced, pile-supported embankment.” Can. Geotech. J. 52 (12): 2041–2054. https://doi.org/10.1139/cgj-2014-0506.
Rui, R., J. Han, S. J. M. van Eekelen, Y. Wan, S. J. M. van Eekelen, and Y. Wan. 2019. “Experimental investigation of soil-arching development in unreinforced and geosynthetic-reinforced pile-supported embankments.” J. Geotech. Geoenviron. Eng. 145 (1): 4018103. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002000.
Rui, R., Y. Ye, J. Han, Y. Zhai, Y. Wan, C. Chen, and L. Zhang. 2022. “Two-dimensional soil arching evolution in geosynthetic-reinforced pile-supported embankments over voids.” Geotext. Geomembr. 50 (1): 82–98. https://doi.org/10.1016/j.geotexmem.2021.09.003.
Russell, D., and N. Pierpoint. 1997. “An assessment of design methods for piled embankments.” Ground Engineering. Accessed June 22, 2021. https://trid.trb.org/view/476724.
Schaefer, V. R., R. R. Berg, J. G. Collin, B. R. Christopher, J. A. DiMaggio, G. M. Filz, D. A. Bruce, and D. Ayala. 2017. Ground improvement methods–reference manual vols. I and II. Washington, DC: US Department of Transportation Federal Highway Administration.
Schanz, T., P. A. Vermeer, and P. G. Bonnier. 1999. “The hardening soil model: Formulation and verification.” In Beyond 2000 in computational geotechnics, edited by R. B. J. Brinkgreve, 281–296. London: Routledge.
Tran, Q. A., P. Villard, and D. Dias. 2021. “Geosynthetic reinforced piled embankment modeling using discrete and continuum approaches.” Geotex. Geomem. 49 (1): 243–256. https://doi.org/10.1016/j.geotexmem.2020.10.026.
van Eekelen, S. J. M., and A. Bezuijen. 2014. “Is 1+1=2? Results of 3D model experiments on piled embankments.” In Proc., 10th Int. Conf. on Geosynthetics. Berlin, Germany: Deutsche Gesellschaft Fuer Geotechnik (DGGT).
van Eekelen, S. J. M., A. Bezuijen, H. J. Lodder, and A. F. van Tol. 2012. “Model experiments on piled embankments. Part I.” Geotext. Geomembr. 32: 69–81. https://doi.org/10.1016/j.geotexmem.2011.11.002.
van Eekelen, S. J. M., A. Bezuijen, and A. F. van Tol. 2013. “An analytical model for arching in piled embankments.” Geotext. Geomembr. 39: 78–102. https://doi.org/10.1016/j.geotexmem.2013.07.005.
van Eekelen, S. J. M., A. Bezuijen, and A. F. van Tol. 2015. “Validation of analytical models for the design of basal reinforced piled embankments.” Geotext. Geomembr. 43 (1): 56–81. https://doi.org/10.1016/j.geotexmem.2014.10.002.
van Eekelen, S. J. M., and M. H. Brugman. 2016. Design guideline basal reinforced piled embankments. Boca Raton, FL: CRC Press.
van Eekelen, S. J. M., and J. Han. 2020. “Geosynthetic-reinforced pile-supported embankments: State of the art.” Geosynth. Int. 27 (2): 112–141. https://doi.org/10.1680/jgein.20.00005.
van Pham, H., and D. Dias. 2021. “3D numerical modeling of rigid inclusion-improved soft soils under monotonic and cyclic loading—Case of a small-scale laboratory experiment.” Appl. Sci. 11 (4): 1426. https://doi.org/10.3390/app11041426.
Wijerathna, M., and D. S. Liyanapathirana. 2020. “Load transfer mechanism in geosynthetic reinforced column-supported embankments.” Geosynth. Int. 27 (3): 236–248. https://doi.org/10.1680/jgein.19.00022.
Wu, P.-C., W.-Q. Feng, and J.-H. Yin. 2020. “Numerical study of creep effects on settlements and load transfer mechanisms of soft soil improved by deep cement mixed soil columns under embankment load.” Geotext. Geomembr. 48 (3): 331–348. https://doi.org/10.1016/j.geotexmem.2019.12.005.
Xing, H., Z. Zhang, H. Liu, and H. Wei. 2014. “Large-scale tests of pile-supported earth platform with and without geogrid.” Geotext. Geomembr. 42 (6): 586–598. https://doi.org/10.1016/j.geotexmem.2014.10.005.
Ye, G.-B., M. Wang, Z. Zhang, J. Han, and C. Xu. 2020. “Geosynthetic-reinforced pile-supported embankments with caps in a triangular pattern over soft clay.” Geotext. Geomembr. 48 (1): 52–61. https://doi.org/10.1016/j.geotexmem.2019.103504.
Zhang, J., Z. Zhao, and Z. Sun. 2021. “Study on long-term performance of geogrid-reinforced and pile-supported embankment at bridge approach.” Adv. Mater. Sci. Eng. 2021: 5567391.
Yu, Y., and R. J. Bathurst. 2017. “Modelling of geosynthetic-reinforced column-supported embankments using 2D full-width model and modified unit cell approach.” Geotex. Geomem. 45 (2): 103–120. https://doi.org/10.1016/j.geotexmem.2017.01.002.
Zhang, Z., M. Wang, G.-B. Ye, and J. Han. 2017. “Influence of number of geosynthetic layers on the performance of geosynthetic-reinforced pile-supported earth platforms on soft soil: Numerical study.” In Proc., 2017 Int. Conf. on Transportation Infrastructure and Materials. Qingdao, China: International Association of Chinese Infrastructure Professionals (IACIP).
Zhuang, Y., and E. A. Ellis. 2016. Finite-element analysis of a piled embankment with reinforcement and subsoil. New York: Thomas Telford Ltd. https://doi.org/10.1680/jgeot.15.p.139.
Zhang, Z., M. Wang, G.-B. Ye, and J. Han. 2019. “A novel 2D-3D conversion method for calculating maximum strain of geosynthetic reinforcement in pile-supported embankments.” Geotex. Geomem. 47 (3): 336–351. https://doi.org/10.1016/j.geotexmem.2019.01.011.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 24Issue 11November 2024

History

Received: Jun 16, 2022
Accepted: May 9, 2024
Published online: Aug 21, 2024
Published in print: Nov 1, 2024
Discussion open until: Jan 21, 2025

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Jiamin Zhang [email protected]
Postdoctoral Associate, SINOPEC Research Institute of Petroleum Engineering, Beijing 100101, China; 3SR Laboratory, Grenoble INP, CNRS, Univ. Grenoble Alpes, F-38000 Grenoble, France. Email: [email protected]
Daniel Dias [email protected]
Professor, 3SR Laboratory, Grenoble INP, CNRS, Univ. Grenoble Alpes, F-38000 Grenoble, France; School of Automotive and Transportation Engineering, Hefei Univ. of Technology, Hefei 230009, China (corresponding author). Email: [email protected]
Professor, 3SR Laboratory, Grenoble INP, CNRS, Univ. Grenoble Alpes, F-38000 Grenoble, France. ORCID: https://orcid.org/0000-0002-2623-1830. Email: [email protected]
Laurent Briançon [email protected]
Professor, INSA-Lyon, Univ. de Lyon, Villeurbanne cedex F-69621, France. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share