Technical Papers
Nov 22, 2022

Bearing Capacity of Annulus Stone Column Double-Encapsulated with Geotextiles

Publication: International Journal of Geomechanics
Volume 23, Issue 2

Abstract

The behavior of annulus stone columns in soft clays is significantly influenced by the outer-to-inner diameter ratio. For this reason, in the present study, a comprehensive experimental investigation program was undertaken in the laboratory on a soft clay from Warangal, India, by varying its water content for achieving different undrained shear strength values and to determine the load-carrying capacity of conventional and annulus stone columns with different outer-to-inner diameter ratios that were double-encapsulated with geotextile. Investigations were also extended to determine the optimum L/D ratio and spacing between the groups of annulus stone columns. Based on these studies, a theoretical framework is developed for interpreting and determining the load-carrying capacity of the stone columns. The studies presented in this paper offer a novel ground improvement technique to enhance the load-carrying capacity of soft soils.

Practical Applications

Conventional in situ pile foundations and stone columns have been extensively used in geotechnical engineering to support widespread loads arising from infrastructure, such as oil storage tanks and embankments on soft soils. However, stone columns typically fail, due to bulging action. Therefore, the geotechnical engineering community uses pile foundations to alleviate failures and support widespread loads on soft soils. However, a significant decrease in the cost of the project and carbon footprint is realized when stone columns replace conventional pile foundations. Therefore, the proposed geosynthetic double-encapsulated annulus stone columns with enhanced confining resistance could be a suitable replacement for conventional stone columns and pile foundations to support widespread loads. The results presented in this paper show a significant reduction in bulging when the conventional stone columns are replaced with annulus stone columns. However, the installation technique adopted in the model tests differs from those in the field. Full-scale field testing of the proposed technique is required to understand the strengths and limitations of the proposed design approach.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was financially supported by Science and Engineering Research Board (SERB), a statutory body of Department of Science & Technology (DST), Government of India, under Grant No. TAR/2019/000274. The financial supports are gratefully acknowledged.

Notation

The following symbols are used in this paper:
Ag
area of ground;
Ar
area replacement ratio;
Asc
area of stone column;
B
diameter of footing;
cu
undrained shear strength of the soft soil;
D
effective diameter of stone column;
Di
inner diameter of annulus stone column;
Do
outer diameter of annulus stone column;
G
modulus of rigidity;
J
polar moment of inertia;
K
stiffness of the stone column;
Ko
average coefficient of lateral earth pressure;
L
length of the stone column;
n
stress concentration factor;
pc
stress exerted by geotextile;
qrg
bearing pressure of reinforced ground;
qsafe
safe bearing pressure of the soil;
qug
bearing pressure of unreinforced ground;
R
ratio of outer-to-inner diameter of annulus stone column;
rd
deformed radius of stone column;
ro
original radius of stone column;
S
spacing of column group;
s
settlement;
u
pore pressure;
x
outer-to-inner diameter ratio of annulus stone column;
β
settlement reduction ratio;
Δp
pressure acting on the geosynthetic material;
ϕ
angle of internal friction of the column material;
ɛa
axial strain;
ɛc
hoop strain;
γ
effective unit weight of soil;
θ
angle of twist;
σc
stress in stone column;
σro
increase in radial stress due to the surcharge load;
σro
effective radial stress;
σro
in-situ lateral stress;
σs
axial stress in the surrounding soil;
σv
maximum effective vertical stress acting on the column;
σv
ultimate axial stress;
σvo
initial effective vertical stress; and
τs
tensile strength of geotextile.

References

Adalier, K., A. Elgamal, J. Meneses, and J. I. Baez. 2003. “Stone columns as liquefaction countermeasure in non-plastic silty soils.” Soil Dyn. Earthquake Eng. 23 (7): 571–584. https://doi.org/10.1016/S0267-7261(03)00070-8.
Alkhorshid, N. R., G. L. S. Araujo, and E. M. Palmeira. 2021. “Consolidation of soft clay foundation improved by geosynthetic-reinforced granular columns: Numerical evaluation.” J. Rock Mech. Geotech. Eng. 13 (5): 1173–1181. https://doi.org/10.1016/j.jrmge.2021.03.004.
Alkhorshid, N. R., G. L. Araujo, E. M. Palmeira, and J. G. Zornberg. 2019. “Large-scale load capacity tests on a geosynthetic encased column.” Geotext. Geomembr. 47: 632–641. https://doi.org/10.1016/j.geotexmem.2019.103458.
ASTM. 2011. Standard test method for tensile properties of geotextiles by the wide-width strip method. ASTM D4595. West Conshohocken, PA: ASTM.
Ayadat, T., and A. M. Hanna. 2005. “Encapsulated stone columns as a soil improvement technique for collapsible soil.” Proc. Inst. Civ. Eng. Ground Improv. 9 (4): 137–147. https://doi.org/10.1680/grim.2005.9.4.137.
Ayadat, T., A. M. Hanna, and A. Hamitouche. 2008. “Soil improvement by internally reinforced stone columns.” Proc. Inst. Civ. Eng. Ground Improv. 161 (2): 55–63. https://doi.org/10.1680/grim.2008.161.2.55.
Balaam, N. P., and J. R. Booker. 1981. “Analysis of rigid rafts supported by granular piles.” Int. J. Numer. Anal. Methods Geomech. 5: 379–403. https://doi.org/10.1002/nag.1610050405.
Balaam, N. P., and J. R. Booker. 1985. “Effect of stone column yield on settlement of rigid foundations in stabilized clay.” Int. J. Numer. Anal. Methods Geomech. 9: 331–351. https://doi.org/10.1002/nag.1610090404.
Basack, S., F. Siahaan, B. Indraratna, and C. Rujikiatkamjorn. 2018. “Stone column–stabilized soft-soil performance influenced by clogging and lateral deformation: Laboratory and numerical evaluation.” Int. J. Geomech. 18 (6): 04018058. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001148.
Bergado, D. T., and F. L. Lam. 1987. “Full scale load test of granular piles with different densities and different proportions of gravel and sand on soft Bangkok Clay.” Soils Found. 27 (1): 86–93. https://doi.org/10.3208/sandf1972.27.86.
Black, J., V. Sivakumar, and A. Bell. 2011. “The settlement performance of stone column foundations.” Géotechnique 61 (11): 909–922. https://doi.org/10.1680/geot.9.P.014.
Black, J. A., V. Sivakumar, M. R. Madhav, and G. A. Hamill. 2007. “Reinforced stone columns in weak deposits: Laboratory model study.” J. Geotech. Geoenviron. Eng. 133: 1154–1161. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:9(1154).
BIS (Bureau of Indian Standards). 1981. Code of practice for determination of bearing capacity of shallow foundations. Indian Standard (IS) 6403. New Delhi, India: BIS.
BIS (Bureau of Indian Standards). 2003. Design and construction for ground improvement—Guidelines. Part 1: Stone columns. IS: 15284. New Delhi, India: BIS.
Castro, J. 2014. “An analytical solution for the settlement of stone columns beneath rigid footings.” Acta Geotech. 11 (2): 309–324. https://doi.org/10.1007/s11440-014-0358-4.
Castro, J. 2017. “Groups of encased stone columns: Influence of column length and arrangement.” Geotext. Geomembr. 45 (2): 68–80. https://doi.org/10.1016/j.geotexmem.2016.12.001.
Chawla, G. R., V. R. Raju, and Y. H. Krishna. 2010. “Some environmental benefits of dry vibro stone columns in a gas-based power plant project.” In Proc. Indian Geotechnical Conference. New Delhi, India: Indian Geotechnical Society.
Chen, J.-F., L.-Y. Li, J.-F. Xue, and S.-Z. Feng. 2015. “Failure mechanism of geosynthetic-encased stone columns in soft soils under embankment.” Geotext. Geomembr. 43 (5): 424–431. https://doi.org/10.1016/j.geotexmem.2015.04.016.
Chen, J.-F., X.-T. Wang, J.-F. Xue, Y. Zeng, and S.-Z. Feng. 2018. “Uniaxial compression behavior of geotextile encased stone columns.” Geotext. Geomembr. 46 (3): 277–283. https://doi.org/10.1016/j.geotexmem.2018.01.003.
Cooper, M. R., and A. N. Rose. 1999. “Stone column support for an embankment on deep alluvial soils.” Proc. Inst. Civ. Eng. Geotech. Eng. 137 (1): 15–25. https://doi.org/10.1680/gt.1999.370103.
Darikandeh, F., B. V. Viswanadham, and M. Arabani. 2022. “Small-scale laboratory test on expansive soil stabilized by CCR-fly ash columns.” Proc. Inst. Civ. Eng. Ground Improv. 175 (1): 64–72. https://doi.org/10.1680/jgrim.18.00002.
Das, A. K., and K. Deb. 2017. “Response of cylindrical storage tank foundation resting on tensionless stone column-improved soil.” Int. J. Geomech. 17 (1): 04016035. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000697.
Das, M., and A. K. Dey. 2020a. “Use of soil cement bed in improvement of load carrying capacity of stone columns.” Geotech. Geol. Eng. 38 (6): 6529–6550. https://doi.org/10.1007/s10706-020-01453-9.
Das, M., and A. K. Dey. 2020b. “Use of soil–cement bed to improve bearing capacity of stone columns.” Int. J. Geomech. 20 (6): 06020008. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001655.
Dash, S. K., and M. C. Bora. 2013a. “Improved performance of soft clay foundations using stone columns and geocell-sand mattress.” Geotext. Geomembr. 41: 26–35. https://doi.org/10.1016/j.geotexmem.2013.09.001.
Dash, S. K., and M. C. Bora. 2013b. “Influence of geosynthetic encasement on the performance of stone columns floating in soft clay.” Can. Geotech. J. 50 (7): 754–765. https://doi.org/10.1139/cgj-2012-0437.
Deb, K., S. Chandra, and P. K. Basudhar. 2008. “Response of multilayer geosynthetic-reinforced bed resting on soft soil with stone columns.” Comput. Geotech. 35 (3): 323–330. https://doi.org/10.1016/j.compgeo.2007.08.004.
Deb, K., N. K. Samadhiya, and J. B. Namdeo. 2011. “Laboratory model studies on unreinforced and geogrid-reinforced sand bed over stone column-improved soft clay.” Geotext. Geomembr. 29: 190–196. https://doi.org/10.1016/j.geotexmem.2010.06.004.
Deb, K., and S. Shiyamalaa. 2016. “Effect of clogging on rate of consolidation of stone column–improved ground by considering particle migration.” Int. J. Geomech. 16 (1): 04015017. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000492.
Debnath, P., and A. K. Dey. 2017a. “Bearing capacity of geogrid reinforced sand over encased stone columns in soft clay.” Geotext. Geomembr. 45 (6): 653–664. https://doi.org/10.1016/j.geotexmem.2017.08.006.
Debnath, P., and A. K. Dey. 2017b. “Bearing capacity of reinforced and unreinforced sand beds over stone columns in soft clay.” Geosynth. Int. 24 (6): 575–589. https://doi.org/10.1680/jgein.17.00024.
Etezad, M., A. M. Hanna, and M. Khalifa. 2018. “Bearing capacity of a group of stone columns in soft soil subjected to local or punching shear failures.” Int. J. Geomech. 18 (12): 04018169. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001300.
Fattah, M. Y., K. T. Shlash, and M. J. Al-Waily. 2011. “Stress concentration ratio of model stone columns in soft clays.” Geotech. Test. J. 34 (1): 103060. https://doi.org/10.1520/GTJ103060.
Fattah, M. Y., B. S. Zabar, and H. A. Hassan. 2016. “Experimental analysis of embankment on ordinary and encased stone columns.” Int. J. Geomech. 16 (4): 04015102. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000579.
Focht, J. A., and V. N. Vijayvergiya. 1972. “A new way to predict capacity of piles in clay.” In Paper Presented at the Offshore Technology Conf. Richardson, TX: OnePetro.
Frikha, W., M. Bouassida, and J. Canou. 2015. “Parametric study of a clayey specimen reinforced by a granular column.” Int. J. Geomech. 15 (5): 04014078. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000419.
Ghazavi, M., A. E. Yamchi, and J. N. Afshar. 2018. “Bearing capacity of horizontally layered geosynthetic reinforced stone columns.” Geotext. Geomem. 46 (3): 312–218. https://doi.org/10.1016/j.geotexmem.2018.01.002.
Ghazavi, M., and J. Nazari Afshar. 2013. “Bearing capacity of geosynthetic encased stone columns.” Geotext. Geomembr. 38: 26–36. https://doi.org/10.1016/j.geotexmem.2013.04.003.
Gniel, J., and A. Bouazza. 2009. “Improvement of soft soils using geogrid encased stone columns.” Geotext. Geomembr. 27 (3): 167–175. https://doi.org/10.1016/j.geotexmem.2008.11.001.
Gniel, J., and A. Bouazza. 2010. “Construction of geogrid encased stone columns: A new proposal based on laboratory testing.” Geotext. Geomembr. 28 (1): 108–118. https://doi.org/10.1016/j.geotexmem.2009.12.012.
Golait, Y. S., and A. H. Padade. 2017. “Analytical and experimental studies on cemented stone columns for soft clay ground improvement.” Int. J. Geomech. 17 (4): 04016100. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000779.
Golait, Y. S., and A. H. Padade. 2018. “Enhancement in effectiveness of cemented stone columns for soft clay ground improvement by providing underreamed bulbs.” Int. J. Geomech. 18 (11): 04018149. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001282.
Han, Z., S. K. Vanapalli, and Z. N. Kutlu. 2016. “Modeling behavior of friction pile in compacted glacial till.” Int. J. Geomech. 16 (6): D4016009.
Hanna, A. M., M. Etezad, and T. Ayadat. 2013. “Mode of failure of a group of stone columns in soft soil.” Int. J. Geomech. 13 (1): 87–96. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000175.
Hegde, A. M., and T. G. Sitharam. 2014. “Effect of infill materials on the performance of geocell reinforced soft clay beds.” Geomech. Geoeng. 10 (3): 163–173. https://doi.org/10.1080/17486025.2014.921334.
Henkel, D. J., and G. D. Gilbert. 1952. “The effect measured of the rubber membrane on the triaxial compression strength of clay samples.” Géotechnique 3 (1): 20–29. https://doi.org/10.1680/geot.1952.3.1.20.
Hong, Y.-S., C.-S. Wu, and Y.-S. Yu. 2016. “Model tests on geotextile-encased granular columns under 1-G and undrained conditions.” Geotext. Geomembr. 44 (1): 13–27. https://doi.org/10.1016/j.geotexmem.2015.06.006.
Hughes, J. M., N. J. Withers, and D. A. Greenwood. 1975. “A field trial of the reinforcing effect of a stone column in soil.” Géotechnique 25 (1): 31–44. https://doi.org/10.1680/geot.1975.25.1.31.
Hughes, J. M. O., and N. J. Withers. 1974. “Reinforcing of soft cohesive soils with stone columns.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 11 (11): 42–49.
Huston, R. L., H. Josephs, and A. Blake. 2009. Practical stress analysis in engineering design. 3rd ed. Boca Raton, FL: CRC Press.
Indraratna, B., S. Basack, and C. Rujikiatkamjorn. 2013. “Numerical solution of stone column–improved soft soil considering arching, clogging, and smear effects. J. Geotech. Geoenviron. Eng. 139: 377–394. https://doi.org/10.1061/(asce)gt.1943-5606.0000789.
Juran, I., and O. Riccobono. 1991. “Reinforcing soft soils with artificially cemented compacted-sand columns.” J. Geotech. Eng. 117: 1042–1060. https://doi.org/10.1061/(asce)0733-9410(1991)117:7(1042).
Kong, G., Y. Zhou, and H. Liu. 2018. “Nonlinear model analysis of radial bulging deformation of geosynthetic-encased stone columns.” Int. J. Geomech. 18 (10): 06018022. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001195.
Low, B. K., S. K. Tang, and V. Choa. 1994. “Arching in piled embankments.” J. Geotech. Eng. 120 (11): 1917–1938. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:11(1917).
Madhav, M. R., and P. P. Vitkar. 1978. “Strip footing on weak clay stabilized with a granular trench or pile.” Can. Geotech. J. 15 (4): 605–609. https://doi.org/10.1139/t78-066.
Maghvan, S. V., R. Imam, and J. S. McCartney. 2019. “Physical modeling of stone columns in unsaturated soil deposits.” Geotech. Test. J. 43 (1): 20170405. https://doi.org/10.1520/GTJ20170405.
McKelvey, D., V. Sivakumar, A. Bell, and J. Graham. 2004. “Modelling vibrated stone columns in soft clay.” Proc. Inst. Civ. Eng. Geotech. Eng. 157 (3): 137–149. https://doi.org/10.1680/geng.2004.157.3.137.
Miranda, M., A. Da Costa, J. Castro, and C. Sagaseta. 2017. “Influence of geotextile encasement on the behaviour of stone columns: Laboratory study.” Geotext. Geomembr. 45 (1): 14–22. https://doi.org/10.1016/j.geotexmem.2016.08.004.
Murugesan, S., and K. Rajagopal. 2006. “Geosynthetic-encased stone columns: Numerical evaluation.” Geotext. Geomembr. 24 (6): 349–358. https://doi.org/10.1016/j.geotexmem.2006.05.001.
Murugesan, S., and K. Rajagopal. 2010. “Studies on the behavior of single and group of geosynthetic encased stone columns.” J. Geotech. Geoenviron. Eng. 136 (1): 129–139. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000187.
Rathod, D., M. S. Abid, and S. K. Vanapalli. 2021. “Performance of polypropylene textile encased stone columns.” Geotext. Geomembr. 49 (1): 222–242. https://doi.org/10.1016/j.geotexmem.2020.10.025.
Rezaei-Hosseinabadi, M. J., M. Bayat, B. Nadi, and A. Rahimi. 2022. “Sustainable utilisation of steel slag as granular column for ground improvement in geotechnical projects.” Case Stud. Constr. Mater. 17: e01333. https://doi.org/10.1016/j.cscm.2022.e01333.
Shahu, J. T., M. R. Madhav, and S. Hayashi. 2000. “Analysis of soft ground-granular pile-granular MAT system.” Comput. Geotech. 27 (1): 45–62. https://doi.org/10.1016/S0266-352X(00)00004-5.
Siahaan, F., B. Indraratna, N. T. Ngo, C. Rujikiatkamjorn, and A. Heitor. 2018. “Influence of particle gradation and shape on the performance of stone columns in soft clay.” Geotech. Test. J. 41 (6): 20160234. https://doi.org/10.1520/GTJ20160234.
Tan, X., M. Zhao, and W. Chen. 2018. “Numerical simulation of a single stone column in soft clay using the discrete-element method.” Int. J. Geomech. 18 (12): 04018176. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001308.
Tan, X., M. Zhao, Z. Hu, and L. Feng. 2020. “Failure process of a single stone column in soft soil beneath rigid loading: Numerical study.” Int. J. Geomech. 20 (8): 04020130. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001776.
Taylan, Z. N., and S. K. Vanapalli. 2012. “Estimation of the shaft capacity of single piles using the conventional and modified β method.” In Unsaturated soils: Research and applications, edited by C. Mancuso, C. Jommi, and F. D’Onza, 255–262. Berlin: Springer.
Van Impe, W. F. 1989. Soil improvement techniques and their evolution. Rotterdam, The Netherlands: Balkema.
Vesic, A. S. 1974. “Analysis of ultimate loads of shallow foundations.” J. Soil Mech. Found Div. 99: 45–73. https://doi.org/10.1016/0148-9062(74)90598-1.
Wood, D. M. 2004. Geotechnical modelling, version 2.2. Abingdon, UK: Taylor & Francis.
Yoo, C. 2010. “Performance of geosynthetic-encased stone columns in embankment construction: Numerical investigation.” J. Geotech. Geoenviron. Eng. 136 (8): 1148–1160. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000316.
Zhang, L., and M. Zhao. 2015. “Deformation analysis of geotextile-encased stone columns.” Int. J. Geomech. 15 (3): 04014053. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000389.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 23Issue 2February 2023

History

Received: Mar 14, 2022
Accepted: Sep 21, 2022
Published online: Nov 22, 2022
Published in print: Feb 1, 2023
Discussion open until: Apr 22, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Research Scholar, Dept. of Civil Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamilnadu, India. ORCID: https://orcid.org/0000-0001-6863-6214. Email: [email protected]
Assistant Professor, Dept. of Civil Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamilnadu, India (corresponding author). ORCID: https://orcid.org/0000-0001-6290-2913. Email: [email protected]; [email protected]
Sai K. Vanapalli, M.ASCE [email protected]
P.Eng.
Professor, Dept. of Civil Engineering, Univ. of Ottawa, Canada, Ottawa, ON, Canada K1N 6N5. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share