Abstract

Despite the widespread usage of the anchoring technique in geotechnical projects in Brazil, mainly in underground works and retaining walls, limited research has been carried out on the determination of load capacity in anchors. Ground anchored walls in Brazil are often dimensioned by methodologies that are not satisfactorily adapted to the reality of the national soil. In this context, this work proposes a simplified computational methodology for forecasting the load capacity of anchors in geotechnical projects. To this end, a fuzzy model is proposed using specific selected characteristics of the soils and geometry of tieback wall systems, whose measurements are easier to be obtained when compared with the load capacity measurement itself. For validation, calibration, and application of the model, the results of 40 performance tests (load tests) were used. Thirty-two samples were used to train the algorithm whereas eight were used to test the model. The results obtained using the proposed approach were close to the extrapolated values of the performance tests according to the existing empirical method, showing that the model is a viable alternative for the design of anchors. Finally, the methodology presented in this work seems to be a first step for the prediction of the anchor bearing capacity and therefore it will certainly benefit from the addition of new test databases of different locations around the world.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Input data for the model are available from the corresponding author upon reasonable request.

Acknowledgments

The authors thank CAPES, CNPQ, and FAPEMIG (APQ-03197-18) for the financial support. The first author thanks IFMG campus Ibirité for giving the time needed to develop this work.

References

ABNT (Associação Brasileira de Normas Técnicas). 2006. Execução de Tirantes Ancorados no Terreno. NBR 5629. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2018. Tirantes Ancorados no Terreno - Projeto e Execução. NBR 5629. Rio de Janeiro, Brazil: ABNT.
Adoko, A. C., and L. Wu. 2011. “Fuzzy inference systems-based approaches in geotechnical engineering- a review.” Electron. J. Geotech. Eng. 16: 1543–1558.
Alkroosh, I., and H. Nikraz. 2012. “Predicting axial capacity of driven piles in cohesive soils using intelligent computing.” J. Eng. Appl. Artif. Intell. 25 (3): 618–627. https://doi.org/10.1016/j.engappai.2011.08.009..
Aoki, N. 1976. “Considerações sobre a capacidade de carga de estacas isoladas.” In Curso de Extensão Universitária em Engenharia de Fundações, Rio de Janeiro, Brazil: Universidade Gama Filho.
Aziz, N., H. Rasekh, A. Mirzaghorbanali, G. Yang, S. Khaleghparast, and J. Nemcik. 2018. “Soil shear strength as a function of NSPT via Van Der Veen extrapolation.” J. Rock Mech. Rock Eng. 51 (7): 2207–2221. https://doi.org/10.1007/s00603-018-1450-0.
Bharati, A., A. Ray, and M. Khandelwal. 2021. “Stability evaluation of dump slope using artificial neural network and multiple regression.” Eng. Comput. 38 (S3): 1835–1843. https://doi.org/10.1007/s00366-021-01358-y.
Bui, D. T., H. Moayedi, M. M. Abdullahi, and A. S. A. Rashid. 2019a. “Prediction of pullout behavior of belled piles through various machine learning modelling techniques.” Sensors 19 (17): 3678. https://doi.org/10.3390/s19173678.
Bui, D. T., H. Moayedi, M. Gor, A. Jaafari, and L. K. Foong. 2019b. “Predicting slope stability failure through machine learning paradigms.” ISPRS Int. J. Geo-Inf. 8 (9): 395. https://doi.org/10.3390/ijgi8090395.
Bustamante, M., and B. Doix. 1985. “Une méthode pour le calcul des tirants et des micropieux injectés.” Bull. Liaison Lab. Ponts Chaussées 140: 75–92.
Caputo, G. V., R. Conti, G. M. B. Viggiani, and C. Prum. 2021. “Improved method for the seismic design of anchored steel sheet pile walls.” ASCE J. Geotech. Geoenviron. Eng. 147 (2): 943–5606. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002429.
Carvalho, E. P., M. P. Miranda, D. S. G. Fernandes, and G. V. Alves. 2018. “Comparison of test methodologies to evaluate steel-concrete bond strength of thin reinforcing bar.” Constr. Build. Mater. 183: 243–252. https://doi.org/10.1016/j.conbuildmat.2018.06.109.
Carvalho, L. A., R. C. Gomes, and T. B. Porto. 2016. “Ancoragens em solo: Estudo de caso, proposta e comparação entre métodos semi-empíricos e extrapolação de van der veen.” In Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica. Belo Horizonte, Brasil: UFMG.
Carvalho, M. A. R. 2009. “Ancoragens pré-esforçadas em obras geotécnicas. Construção, ensaios e análise comportamental.” Ph.D. thesis, Faculdade de Engenharia da Universidade do Porto.
Chen, J., S. Saydam, and P. C. Hagan. 2018. “Numerical simulation of pull-out behaviour of fully grouted cable bolts.” Constr. Build. Mater. 191: 1148–1158. https://doi.org/10.1016/j.conbuildmat.2018.10.083.
Chen, S.-M. 1996. “Forecasting enrollments based on fuzzy time series.” Fuzzy Sets Syst. 81 (3): 311–319. https://doi.org/10.1016/0165-0114(95)00220-0.
Chen, S.-M., and Y.-C. Chang. 2010. “Multi-variable fuzzy forecasting based on fuzzy clustering and fuzzy rule interpolation techniques.” Inf. Sci. 180 (24): 4772–4783. https://doi.org/10.1016/j.ins.2010.08.026.
Chen, S.-M., and K. Tanuwijaya. 2011. “Multivariate fuzzy forecasting based on fuzzy time series and automatic clustering techniques.” Expert Syst. Appl. 38 (8): 10594–10605. https://doi.org/10.1016/j.eswa.2011.02.098.
Cheng, M. Y., H. C. Tsai, C. H. Ko, and W. T. Chang. 2008. “Evolutionary fuzzy neural inference system for decision making in geotechnical engineering.” J. Comput. Civ. Eng. 22 (4): 272–280. https://doi.org/10.1061/(ASCE)0887-3801(2008)22:4(272).
Cintra, C. A., N. Aoki, C. H. C. Tsuha, and H. L Giacheti. 2013. Fundações, ensaios estáticos e dinâmicos. São Paulo, Brazil: Oficina de Textos.
Coulomb, C. A. 1776. “Essai sur une application des regles des maximis et minimis a quelquels problemesde statique relatifs, a la architecture.” Ph.D. thesis, Acad. Roy. Div. Sav.
Deris, A. M., and B. Solemon. 2020. “Classification of slope stability based on Artificial Neural Network and Naive Bayes.” J. Energy Environ. 12 (2): 1–5.
D’Hyppolito, L. C. B. S. 2017. “Relações empíricas para estimativa da resistência ao arrancamento de ancoragens. dissertação (mestrado em programa de engenharia civil).” M.S. thesis, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia.
Dias, M. V. L. 2019. “Proposta de dimensionamento geotécnico de tirantes por meio de ensaios de recebimento.” M.S. thesis, Programa de Pós-Graduação em Geotecnia da UFOP.
Dias, M. V. L., R. C. Gomes, and T. B. Porto. 2021. “Estudo do dimensionamento do bulbo ancorado de tirantes através da análise de ensaios de recebimento.” Rev. Geotech. 151: 89–104. https://doi.org/10.24849/j.geot.2021.151.
Dodagoudar, G. R., and G. Venkatachalam. 2000. “Reliability analysis of slopes using fuzzy sets theory.” Comput. Geotech. 27 (2): 101–115. https://doi.org/10.1016/S0266-352X(00)00009-4.
Ebid, A. 2021. “35 years of (ai) in geotechnical engineering: State of the art.” Geotech. Geol. Eng. 39 (2): 637–690. https://doi.org/10.1007/s10706-020-01536-7.
Elton, D., C. Juang, and P. Lin. 2000. “Vertical capacity of piles using fuzzy sets.” Civ. Eng. Environ. Syst. 17 (3): 237–262. https://doi.org/10.1080/02630250008970284.
Fabris, C., H. F. Schweiger, B. Pulko, H. Woschitz, and V. Račanský. 2021. “Numerical simulation of a ground anchor pullout test monitored with fiber optic sensors.” J. Geotech. Geoenviron. 147 (2): 04020163. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002442.
Falconi, F. 2005. “Capacidade geotécnica de ancoragens reinjetáveis.” In Proc., IV COBRAE - Conferência Brasileira sobre Estabilidade de Encostas, 1–10. Salvador, Brazil: Escola Politécnica da Universidade Federal da Bahia.
Ferrari, A. O. 1980. “Um estudo sobre os resultados dos testes fundamentais para o atirantamento provisório no solo de são paulo.” M.S. thesis, Escola Politécnica da Universidade de São Paulo.
FHWA (Federal Highway Administration). 1999. Ground anchors and anchorred systems. FHWA-IF-99-0151999. Washington, DC: FHWA.
Giasi, C. I., P. Masi, and C. Cherubini. 2003. “Probabilistic and fuzzy reliability analysis of a sample slope near Aliano.” Eng. Geol. 67 (3–4): 391–402. https://doi.org/10.1016/S0013-7952(02)00222-3.
Gong, W., L. Wang, S. Khoshnevisan, C. H. Juang, H. Huang, and j. Zhang. 2015. “Robust geotechnical design of earth slopes using fuzzy sets.” J. Geotech. Geoenviron. Eng. 141 (1): 04014084. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001196.
Gontijo, G. M. 2020. “Reavaliação geotécnica das ancoragens de uma estrutura de contenção com patologias diversas.” M.S. thesis, Núcleo de Geotecnia, Universidade Federal de Ouro Preto.
Huang, M., Z. Zhou, and S. Yue. 2012. “A novel durable intelligent fiber reinforced polymer anchor with embedded optical fiber Bragg grating sensors.” Sci. China Technol. Sci. 55 (5): 1455–1462. https://doi.org/10.1007/s11431-012-4761-5.
Jadid, R., A. Shahriar, and M. Rahman. 2019. “Evaluation of theoretical models to predict the pullout capacity of a vertical anchor embedded in cohesionless soil.” Geotech. Geol. Eng. 37 (5): 3567–3586. https://doi.org/10.1007/s10706-019-00870-9.
Joppert, I. O., Jr., W. Mallmann, and W. R. Iorio. 2004. “Método de cálculo para estimativa da carga de ruptura de tirantes auto-perfurantes tipo tubular.” In Proc., Seminário de Engenharia de Fundações Especiais e Geotecnia – SEFE V, 1–8. São Paulo, Brazil: Associação Brasileira de Empresas de Engenharia de Fundações e Geotecnia (ABEF).
Juang, C., D. Elton, and P.-S. Lin. 1997. “Estimation of vertical capacity of single piles considering uncertainty.” Transp. Res. Rec. 1582 (1): 68–72. https://doi.org/10.3141/1582-11.
Juang, C., J. Wey, and D. Elton. 1991. “Model for capacity of single piles in sand using fuzzy sets.” J. Geotech. Eng. 117 (12): 1920–1931. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:12(1920).
Kaloop, M. R., J. W. Hu, and E. Elbeltagi. 2017. “Predicting the pullout capacity of small ground anchors using nonlinear integrated computing techniques.” Shock Vib. 2017: 2601063.
Labuz, J. F., and A. Zang. 2012. “Mohr–Coulomb failure criterion.” J. Rock Mech. Rock Eng. 45 (6): 975–979. https://doi.org/10.1007/s00603-012-0281-7.
Lande, E. L., K. Karlsrud, J. Langford, and S. Nordal. 2020. “Effects of drilling for tieback anchors on surrounding ground: Results from field tests.” Geotech. Geoenviron. Eng. 146 (8): 05020007. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002274.
Liang, S., L. Foong, and Z. Lyu. 2020. “Determination of the friction capacity of driven piles using three sophisticated search schemes.” Eng. Comput. 38 (2): 1515–1527. https://doi.org/10.1007/s00366-020-01118-4.
Luo, Z., S. Atamturktur, C. H. Juang, H. Huang, and P. Lin. 2011. “Probability of serviceability failure in a braced excavation in a spatially random field: Fuzzy finite element approach.” Comput. Geotech. 38 (8): 1031–1040. https://doi.org/10.1016/j.compgeo.2011.07.009.
Magalhães, P. H. L. 2005. “Avaliação dos métodos de capacidade de carga e recalque de estacas hélice contínua via provas de carga.” M.S. thesis, Programa de Pós Graduação em Engenharia Civil, UNB.
Massad, F. D. 1986. “Notes on the interpretation of failure load from routine pile load tests.” Solos Rochas 9: 33–36.
Moayedi, H., D. T. Bui, B. Kalantar, and L. K. Foong. 2019. “Machine-learning-based classification approaches toward recognizing slope stability failure.” Appl. Sci. 9 (21): 4638. https://doi.org/10.3390/app9214638.
Moayedi, H., M. Mosallanezhad, and A. Rashid. 2020. “A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: Theory and applications.” Comput. Appl. 32 (2): 495–518.
Mosallanezhad, M., and H. Moayedi. 2017. “Developing hybrid artificial neural network model for predicting uplift resistance of screw piles.” Arabian J. Geosci. 10 (22): 479. https://doi.org/10.1007/s12517-017-3285-5.
Nunes, A. I. C. 1987. “Ground prestressing – first casagrande lecture.” In Proc., VIII Congresso Panamericano de Mecânica dos Solos e Engenharia De Fundações, 1–7. Rio de Janeiro, Brazil: Associação Brasileira de Mecãnica dos Solos e Engenharia Geotécnica (ABMS).
Oliveira, P. V. G., F. F. Tolentino, A. Romanini, and T. B. Porto. 2019. “Utilização do método de Porto (2015) no projeto de ancoragens de reforço de cortina atirantada em belo horizonte - mg.” Revist. Multidiscip. Nordeste Min. 1: 1–23.
Ostermayer, H. 1974. “Construction, carrying behavior and creep characteristics of ground anchors.” In Proc., Conf. on Diaphragm Walls and Anchorages, 141–151, London: International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE).
Pereira, A. B., and T. B. Porto. 2020. “Soil-structure interaction applied to anchored retaining wall-geotechnical and structural analysis.” Int. J. Geosci. 2: 1–13.
Porto, T. B. 2015. “Comportamento geotécnico e metodologia via web para previsão e controle.” Ph.D. thesis, Dept. of Urban Engineering, Universidade Federal de Ouro Preto.
Porto, T. B., D. C. Ferreira, and C. R. Silva. 2017a. “Estruturas ancoradas e suas aplicações na geotecnia.” Revist. Fundacoes Obras Geotec. 1: 42–53.
Porto, T. B., R. C. Gomes, B. D. Martini, and D. A. Araujo. 2016. “Proposta de metodologia via web para previsão e controle de ancoragens em solos.” In Proc., VII Simpósio Brasileiro de Engenheiros Geotécnicos Jovens, 1–6. Belo Horizonte, Brazil: Associação Brasileira de Mecãnica dos Solos e Engenharia Geotécnica (ABMS).
Porto, T. B., A. C. A. Torres, and R. C. Gomes. 2017b. “Behavior of reinjectable and prestressed anchors in soil masses: Construction case study in Congonhas - Brazil.” Soils Rocks 40 (2): 177–186. https://doi.org/10.28927/SR.
Pramanik, R., D. Baidya, and N. Dhang. 2019a. “Implementation of fuzzy reliability analysis for elastic settlement of strip footing on sand considering spatial variability.” Int. J. Geomech. 19 (12): 04019126. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001514.
Pramanik, R., D. Baidya, and N. Dhang. 2019b. “Reliability analysis for bearing capacity of surface strip footing using fuzzy finite element method.” Geomech. Geoeng. 15 (1): 29–41. https://doi.org/10.1080/17486025.2019.1601268.
Pramanik, R., D. Baidya, and N. Dhang. 2020. “Numerical investigation of the bearing capacity factors using the finite element method.” In Geotechnical characterization and modelling, edited by M. Latha Gali, and P. R.R. Lecture Notes in Civil Engineering. Singapore: Springer.
Pramanik, R., D. Baidya, and N. Dhang. 2021. “Reliability assessment of three-dimensional bearing capacity of shallow foundation using fuzzy set theory.” J. Front. Struct. Civ. Eng. 15 (2): 478–489. https://doi.org/10.1007/s11709-021-0698-8.
Pramanik, R., D. Baidya, and N. Dhang. 2022. “Effect of spatial variability of soil properties on bearing capacity of strip footing under fuzzy uncertainty.” J. Risk Uncertainty Eng. Syst. 8 (1): 04021076.
PTI (Post-Tensioning Institute). 1996. Recommendations for prestressed rock and soil anchors. Farmington Hills, MI: PTI.
Sahajda, K. 2014. “Ground anchor loads measured on an excavation sheet pile wall.” Tunneling Underground Constr. 145: 974–983. https://doi.org/10.1061/9780784413449.
Samui, P. 2014. “Determination of pull out capacity of small ground anchor using data mining techniques.” In Data mining and analysis in the engineering field, edited by V. Bhatnagar, 80–88, Hershey, PA: IGI Global.
Samui, P. 2020. “Application of artificial intelligence in geo-engineering.” In Information technology in geo-engineering, edited by A. Correia, J. Tinoco, P. Cortez and L. Lamas. Springer Series in Geomechanics and Geoengineering. Cham: Springer.
Samui, P., and I. Saini. 2013. “Utilization of multivariate adaptive regression splines (MARS) for prediction of pull out capacity of small ground anchor.” Int. J. Adv. Soft Comput. Appl. 5 (1): 80–88.
Santos, D. E., P. C. C. Gonçalves, G. Brigolini, T. B. Porto, L. D. Ferreira, and R. C. Gomes. 2019. “Numerical study of slope stability in an anchored wall in Belo Horizonte, Brazil.” Int. J. Sci. Eng. Invest. 8 (95): 38–45.
Shahin, M. A., and M. B. Jaksa. 2006. “Pullout capacity of small ground anchors by direct cone penetration test methods and neural networks.” Can. Geotech. J. 43 (6): 626–637. https://doi.org/10.1139/t06-029.
Silva, M. A., and A. C. C. F. Sieira. 2020. “Aplicação de um modelo de inteligência computacional híbrido (neuro-fuzzy) na previsão do potencial de ruptura de taludes.” Epistem. Transversalis 11: 155–180.
Song, Q., and B. S. Chissom. 1993a. “Forecasting enrollments with fuzzy time series.” Fuzzy Sets Syst. 54: 1–9. https://doi.org/10.1016/0165-0114(93)90355-L.
Song, Q., and B. S. Chissom. 1993b. “Fuzzy time series and its models.” Fuzzy Sets Syst. 54 (3): 269–277. https://doi.org/10.1016/0165-0114(93)90372-O.
Souza, R. N. 2001. “Ancoragens reinjetáveis e protendidas em solo: previsão de comportamento e controle de execução.” Ph.D. thesis, Escola Politécnica da Universidade de São Paulo.
Van Der Veen, C. 1953. “The bearing capacity of a pile.” In Proc., 3rd Int. Conf. on Soil Mechanics and Foundation Engineering, 84–90. London: International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE).
Vasconcelos, L. A. C. 2016. “Estudo da capacidade de carga de ancoragens protendidas e reinjetáveis em maciços geotécnicos.” M.S. thesis, Núcleo de Geotecnia, Universidade Federal de Ouro Preto.
Vasconcelos, L. A. C., J. A. Pereira, and T. B. Porto. 2018a. “Anchored structures: State of art in Brazil and in the world.” Int. J. Sci. Eng. Invest. 7: 61–70.
Vasconcelos, L. A. C., J. A. Pereira, and T. B. Porto. 2018b. “Soil shear strength as a function of NSPT via Van Der Veen extrapolation.” Int. Eng. J. 71 (4): 513–519. https://doi.org/10.1590/0370-44672017710002.
Wang, Z. Z., C. Xiao, S. H. Goh, and M. X. Deng. 2021. “Metamodel-based reliability analysis in spatially variable soils using convolutional neural networks.” J. Geotech. Geoenviron. Eng. 147 (3): 04021003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002486.
Yucel, M., G. Bekdaş, S. M. Nigdeli, and A. E. Kayabekir. 2021. “An artificial intelligence-based prediction model for optimum design variables of reinforced concrete retaining walls.” Int. J. Geomech. 21 (12). https://doi.org/10.1061/(ASCE)GM.1943-5622.0002234.
Zadeh, L. A. 1975. “The concept of a linguistic variable and its application to approximate reasoning.” Inf. Sci. 8 (3): 199–249. https://doi.org/10.1016/0020-0255(75)90036-5.
Zhang, K., Z. Fang, A. Nanni, J. Hu, and G. Chen. 2015. “Experimental study of a large-scale ground anchor system with FRP tendon and RPCgrout medium.” J. Compos. Constr. 19 (4): 04014073. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000537.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 23Issue 10October 2023

History

Received: May 25, 2021
Accepted: Dec 10, 2022
Published online: Jul 26, 2023
Published in print: Oct 1, 2023
Discussion open until: Dec 26, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Thiago Henrique Barbosa De Carvalho Tavares, Ph.D.
Instituto Federal de Minas Gerais - Campus Ibirité, Ibirité 32406-190, Brazil.
Centro Federal de Educação Tecnológica de Minas Gerais - Campus Curvelo, Curvelo 35790-636, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-3355-0477. Email: [email protected]
Eduardo Mazoni Andrade Marçal Mendes, Ph.D.
Escola de Engenharia, Departamento de Engenharia Eletrônica, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
Bruno Pérez Ferreira, Ph.D.
Faculdade de Ciências Econômicas, Departamento de Ciências Administrativas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share