Chapter
Mar 30, 2017

Numerical Modeling of Columnar-Reinforced Ground Behavior during Dynamic Centrifuge Testing

Publication: Geotechnical Frontiers 2017

Abstract

Predicting the response of soil profiles during earthquakes is one of the major challenges in geotechnical earthquake engineering. The presence of reinforcing elements such as stiff columns adds further complexity to the problem due to the interaction of these stiff elements with the surrounding ground. This research presents the results of advanced numerical simulations of dynamic centrifuge tests performed on a columnar reinforced model with a loose sandy profile. The model was subjected to earthquake base motions of varying intensities to investigate the reinforcing mechanisms of soil-cement columns. Numerical simulations were performed using the finite element computational platform OpenSees with pressure dependent multi yield (PDMY02) constitutive model. Simulated and measured values were compared for seismic intensity, excess pore water pressure and ground settlement at different locations within soil profile. The calibrated numerical model was able to realistically predict the response of reinforced ground.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Geotechnical Frontiers 2017
Geotechnical Frontiers 2017
Pages: 39 - 48

History

Published online: Mar 30, 2017

Permissions

Request permissions for this article.

Authors

Affiliations

Soheil Kamalzare [email protected]
Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Virginia Tech, 111 Patton Hall, Blacksburg, VA 24061. E-mail: [email protected]
C. Guney Olgun, Ph.D. [email protected]
Research Assistant Professor, Dept. of Civil and Environmental Engineering, Virginia Tech, 111A Patton Hall, Blacksburg, VA 24061. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$140.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$140.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share