Chapter
Aug 11, 2016

Containment and Dewatering of Heavy Metal Contaminated Slurries Using Reactive Minerals and Cellulose Materials in Geotextile Tubes

Publication: Geosynthetics, Forging a Path to Bona Fide Engineering Materials

Abstract

The aim of this study is to investigate effective and sustainable measures to contain heavy metal contaminated sediments inside a geotextile tube during the dewatering process. A series of batch adsorption and pressure filtration tests (PFT) evaluated the efficacy of cellulosic materials (kraft pulp, jute fibers, and peanut hulls) on adsorption of selected heavy metals (Pb2+, Cu2+, Zn2+, and Cd2+) and the dewatering performance inside a geotextile tube. The batch adsorption tests conducted on two soils, sandy and silty in composition (Tully sands and Tully fines) with metal ions show that they have a very high affinity towards Pb and Cu compared to Cd and Zn. The maximum adsorption capacity as calculated from the batch adsorption of Tully sand to Pb and Cu are 33.12 and 6.54 mg/g, respectively. The Tully fines had even higher adsorption capacities of 57.3 mg/g Pb and 9.48 mg/g Cu. The concentration of filtrate collected from PFT, measured using ICP OES (inductively coupled plasma optical emission spectrometry), also shows that Tully fines were able to adsorb 99% Pb and Cu, 88% Cd, and 83% Zn. Meanwhile, Tully sand adsorbed 96% Pb, 90% Cu, 81% Cd, and 76% Zn. Although significant adsorption was accomplished by both soils rich in reactive minerals illite, chlorite, and calcite, the addition of cellulosic materials provided additional benefits in dewatering. Among three cellulosic materials, the addition of jute fibers significantly reduced the water content of the Tully sand filter cake by 44%. Since kraft pulp has a tendency to adsorb water and swell, water content as high as 40% was measured. The water content did not change significantly with the use of peanut hulls. All the cellulosic materials were successful in improving the overall turbidity of the filtrate. A drop in turbidity of more than 60-80% was observed with the addition of jute fibers.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Geosynthetics, Forging a Path to Bona Fide Engineering
                Materials
Geosynthetics, Forging a Path to Bona Fide Engineering Materials
Pages: 126 - 139

History

Published online: Aug 11, 2016

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Prabesh Rupakheti
Teaching Assistant, Dept. of Civil and Environmental Engineering, Syracuse Univ., Syracuse, NY 13244.
Shobha K. Bhatia, Ph.D., M.ASCE
Professor, Dept. of Civil and Environmental Engineering, Syracuse Univ., Syracuse, NY 13244.
Erin K. Jackson
Staff Consultant, Civil and Environmental Consultants Inc., 700 s Elmer Ave., Suite 125, Sayre, PA 18840.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$84.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$84.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share