Abstract

This paper reports on the results of a study on the performance and effectiveness of acrylic copolymer stabilization in improving the strength, water retention capacity and dust resistance of copper mine tailings (MT). Samples were taken from both untreated and acrylic copolymer-treated TSF. Fall cone, water retention and wind tunnel tests were conducted on the samples to evaluate their strength, water retention capacity and dust resistance. SEM imaging was also performed to evaluate their microstructure. The results indicate that acrylic copolymer treatment improves the strength, water retention capacity, and dust resistance of MT. The improvement is because acrylic copolymer application enhances the agglomeration of MT particles and forms coating on the MT particle surface, leading to a denser microstructure. The formation of a loose white powder on the surface of MT was observed in the study. FTIR and XRD analyses were performed to characterize this material because it may have an adverse effect on dust resistance of MT.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Geoenvironmental Engineering
Geoenvironmental Engineering
Pages: 80 - 89

History

Published online: May 22, 2014

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Krishna Parameswaran [email protected]
P.E.
Director, Environmental Affairs Department, ASARCO LLC, Tucson, AZ, USA. E-mail: [email protected]
Jamie Ekholm [email protected]
Environmnetal Engineer, Environmental Department, ASARCO LLC Mission Complex, Sahuarita, AZ, USA. E-mail: [email protected]
Lianyang Zhang [email protected]
P.E.
M.ASCE
Associate Professor, Department of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson, AZ, USA. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share