Chapter
May 22, 2014

Simplified Thermal Stress Model to Predict Low Temperature Cracks in Flexible Pavement

Publication: Pavement Materials, Structures, and Performance

Abstract

Thermal stress due to a decrease in temperature is usually considered the product of modulus of Hot-Mix Asphalt (HMA), coefficient of thermal contraction (CTC) of HMA and the decrease in temperature. The effects of viscoelasticity, nonlinear temperature profile and stress history on the modulus of asphalt concrete were widely explored in the literature. However, the nonlinear behavior of CTC was neglected in all thermal stress models. This study incorporates the temperature-dependent CTC in a simplified thermal stress model and validates the results comparing with the field observations. As the first step, this study measures the dynamic modulus at low frequency and low temperature. The CTC of asphalt concrete is then determined in the laboratory at different temperatures and validates the results using the data from an instrumentation pavement section. Then, the thermal stress model has been developed using the low temperature CTC, temperature and frequency dependent stiffness and the decrease in temperature. Finally, these models are used to predict transverse crack spacing and are compared with two field observations. In addition, the critical temperature of asphalt concrete is predicted with age of pavement by intersecting tensile strength and developed tensile stress curves. Results show that the simplified viscoelastic model - without considering stress history and nonlinear temperature profile - predicts the crack spacing accurately. In addition, the critical temperature of asphalt concrete is not a constant value. It increases with the age of the pavement.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Pavement Materials, Structures, and Performance
Pavement Materials, Structures, and Performance
Pages: 251 - 261

History

Published online: May 22, 2014

Permissions

Request permissions for this article.

Authors

Affiliations

Md Rashadul Islam [email protected]
Ph.D. Student, Department of Civil Engineering, University of New Mexico, MSC01 1070, 1 University of New Mexico, Albuquerque, NM 87131. E-mail: [email protected]
Umme A. Mannan
Ph.D. Student, Department of Civil Engineering, University of New Mexico, MSC01 1070, 1 University of New Mexico, Albuquerque, NM 87131
Asma. Rahman
Ph.D. Student, Department of Civil Engineering, University of New Mexico, MSC01 1070, 1 University of New Mexico, Albuquerque, NM 87131
Rafiqul A. Tarefder
Associate Professor, Department of Civil Engineering, University of New Mexico, MSC01 1070, 1 University of New Mexico, Albuquerque, NM 87131, USA.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share