Chapter
May 22, 2014

Shakedown of Layered Pavements under Repeated Moving Loads

Publication: Pavement Materials, Structures, and Performance

Abstract

In recent years, shakedown theory has been suggested as a more rational theoretical foundation for pavement structural design. This paper suggests a numerical approach to find shakedown load limit of layered pavements based on an investigation of residual stress field, which plays an important role in helping the structure to reach the shakedown status. A finite element model is established for pavement structures under repeated moving surface loads, where the Mohr-Coulomb yield criterion with associated plastic flow is assumed to capture the plastic behaviour of pavement materials. A criterion based on static shakedown theorem is suggested to distinguish shakedown and non-shakedown status of pavement structures subjected to different magnitudes of loads, thereby achieving a numerical shakedown limit. Comparisons between the numerical shakedown limits and theoretical shakedown limits of Wang and Yu (2013a) show good agreement. Investigation of the development of residual stresses in layered pavements also provides deep insight to the application of shakedown theory. In addition, the proposed approach can be easily extended to pavement materials following non-associated plastic flow rule.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Pavement Materials, Structures, and Performance
Pavement Materials, Structures, and Performance
Pages: 179 - 188

History

Published online: May 22, 2014

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Ph.D. student, Nottingham Centre of Geomechanics, The University of Nottingham, Nottingham, NG7 2RD, UK. E-mail: [email protected]
Assistant Professor, Department of Civil Engineering, The University of Nottingham Ningbo, 315100, China. E-mail: [email protected]
Professor, Nottingham Centre of Geomechanics, The University of Nottingham, Nottingham, NG7 2RD, UK. E-mail: [email protected]
Dariusz Wanatowski [email protected]
M.ASCE
Associate Professor, Department of Civil Engineering, The University of Nottingham Ningbo, 315100, China. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share