Chapter
Apr 26, 2013

Stochastic Energy Simulation for Risk Analysis of Energy Retrofits

Publication: AEI 2013: Building Solutions for Architectural Engineering

Abstract

Building energy modeling is a common procedure for the analysis of energy efficiency retrofits. Smaller retrofits of isolated systems, such as equipment motors and lighting systems, can often be made without the need for complete energy modeling; however, when the retrofit affects multiple systems, such as those involving the building envelope or the heating or cooling system, or when the retrofits of motors and lighting systems are so significant that they affect the heating and cooling load of the building, a more complete energy analysis is necessary. Because the exact inputs to building energy models are never known, and some inputs to the model are stochastic in nature (e.g., occupancy, plug-loads, lighting loads, weather), deterministic prediction of energy use is not only invariably inaccurate, it is actually inappropriate. When simple deterministic energy savings without uncertainty are used in economic analyses (e.g., return on investment), it is difficult to analyze the risk/benefit of the retrofit investment with true accuracy. A stochastic simulation, which includes the effects of input uncertainty and stochastic inputs, is a more appropriate way to predict the building energy use. In this paper, we present a method for stochastic energy simulation that propagates probability characterizations of the input values through a computational engine to create probable energy use predictions. When this probable energy use is combined with forecasts of energy and construction costs, a probable estimate of return on energy efficiency measure investment is generated, and an economic risk/benefit analysis of the investment can be made. Such information is especially important to the growing energy service company market. The computational engine is based on the CEN/ISO monthly building energy calculation standards so its accuracy is well researched and validated, and the computational simplicity allows for efficient stochastic analysis.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to AEI 2013
AEI 2013: Building Solutions for Architectural Engineering
Pages: 902 - 911

History

Published online: Apr 26, 2013

Permissions

Request permissions for this article.

Authors

Affiliations

Ralph T. Muehleisen [email protected]
Decision and Information Sciences, Argonne National Laboratory, Lemont, IL 60439. E-mail: [email protected]
Yeonsook Heo [email protected]
Decision and Information Sciences, Argonne National Laboratory, Lemont, IL 60439. E-mail: [email protected]
Diane J. Graziano [email protected]
Decision and Information Sciences, Argonne National Laboratory, Lemont, IL 60439. E-mail: [email protected]
Leah B. Guzowski [email protected]
Decision and Information Sciences, Argonne National Laboratory, Lemont, IL 60439. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share