Chapter
Apr 26, 2012

Computational Method for Determining Voids under Concrete Slabs through FWD Deflections

Publication: Geo-Frontiers 2011: Advances in Geotechnical Engineering

Abstract

Knowledge of the condition of an existing concrete pavement is vital to the success of any rehabilitation and maintenance project. Accurate mapping of the voids under concrete slabs provides critical information for roadway designers to derive optimum rehabilitation and maintenance strategies. The Falling Weight Deflectometer (FWD) has been used successfully for many years as a forensic engineering tool. However, the literature on applying FWD to detect voids under concrete slabs is quite limited. The FWD defections are influenced by many factors such as the load transfer across slabs, size of void area, slab thickness, and layer moduli of the concrete and supporting layers. To identify and characterize voids under concrete slabs, pavement engineers need computation methods or algorithms for interpretation of FWD deflection basin. In this study, a Finite Element Model (FEM) was applied to address the load transfer between the joints of concrete slabs. Results from sensitivity analysis indicate that there is an exponential relationship between the slab size and the load transfer efficiency. To simply the analysis without conducting FEM analysis each time, a regression equation is established to estimate the effect of slab size on load transfer efficiency. In addition, the proposed method considers the effects of slab size, thickness, and layer moduli. The proposed method has been calibrated and applied to one highway project, where the voids under the concrete slabs have been mapped accurately. It is concluded that the proposed method is very reliable and can accurately detect voids under concrete slabs using the FWD deflection basin.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Geo-Frontiers 2011
Geo-Frontiers 2011: Advances in Geotechnical Engineering
Pages: 2822 - 2830

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Professor, Changsha University of Science & Technology, Changsha 410076, China.E-mail: [email protected]
Doctor, Civil Engineering and Architecture Institute, Central South University, Changsha 410075, China.E-mail: [email protected]
Xian-Yong Gan [email protected]
Associate Professor, Changsha University of Science & Technology, Changsha 410076, China.E-mail: [email protected]
Jin-Ping Xiao [email protected]
Senior Engineer, Expressway Administrative Bureau of Hunan Province, Changsha 410001, China.E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share