Chapter
Apr 26, 2012

Scrutinizing Parameter Consistency and Predictive Uncertainty in Rainfall-Runoff Models Using Bayesian Total Error Analysis

Publication: World Environmental and Water Resources Congress 2008: Ahupua'A

Abstract

The lack of a robust framework for quantifying the uncertainty in the parameters and predictions of conceptual rainfall runoff (CRR) models remains a key challenge for hydrological science. The Bayesian total error analysis (BATEA) provides a systematic approach to hypothesize, infer and evaluate probability models describing input, output and model structural error. This paper compares the ability of BATEA and standard calibration approaches (standard least squares (SLS) and weighted least squares (WLS)) to address two key requirements of uncertainty assessment: (i) reliable quantification of predictive uncertainty and (ii) reliable estimation of parameter uncertainty. The case study was challenging due to the semi-arid climate, ephemeral responses and high rainfall gradients in the catchment. The post-calibration diagnostics suggest that BATEA provided a considerable improvement over SLS/WLS in terms of satisfying the assumed probability models. This was also confirmed using a novel quantile-based diagnostic for assessing whether the total predictive uncertainty is consistent with the observations. Parameter consistency and reliability was evaluated by comparing parameter estimates obtained for the same CRR model with same catchment runoff, but with different rainfall gauges and time periods. BATEA provided more consistent, albeit more uncertain, parameter estimates than SLS/WLS. The implication for CRR parameter regionalization is that the WLS/SLS-derived parameter estimates can be highly dependent on the choice of rainfall data and calibration period, which may obscure the relationship between CRR parameters and catchment attributes. In contrast, BATEA has the potential to remove this obstacle to regionalization.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resources Congress 2008
World Environmental and Water Resources Congress 2008: Ahupua'A
Pages: 1 - 10

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Dmitri Kavetski [email protected]
School of Engineering, University of Newcastle, Callaghan, NSW, Australia. E-mail: [email protected]
Mark Thyer
School of Engineering, University of Newcastle, Callaghan, NSW, Australia
Benjamin Renard
School of Engineering, University of Newcastle, Callaghan, NSW, Australia
George Kuczera
School of Engineering, University of Newcastle, Callaghan, NSW, Australia
Stewart Franks
School of Engineering, University of Newcastle, Callaghan, NSW, Australia
Sri Srikanthan
Bureau of Meteorology, Melbourne, VIC, Australia

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share