Chapter
Apr 26, 2012

Short-Term Drought Risk Dynamics: The Impact of Multi-Decadal Climate Variability and Water Supply System Properties

Publication: World Environmental and Water Resources Congress 2008: Ahupua'A

Abstract

The impact of climate variability and climate change on the security of water supply has significant consequences for water resource planning. It is currently the subject of considerable uncertainty in Australia and around the world. Persistent drought across much of Australia and increasing water demand due to population growth has placed greater stress on water supply systems. This paper represents an alternative approach to assessing water supply system security through the use of short-term drought risks and dynamic conditional simulation techniques. A simulation framework that incorporates multi-decadal climate persistence into stochastic rainfall simulations is presented. This climate-informed multi-time scale stochastic (CIMSS) framework was compared to the widely-used AR(1) model. It was found that the CIMSS framework estimated short-term drought risks that were up to double that estimated by the AR(1) model, dependent on climate regime. However, the long-term risks showed insignificant differences between the models. Conditioning simulations on the climate regime and initial reservoir conditions induced a peak in the dynamic short-term drought risk. Thus, the concept of peak short-term conditional drought risk is introduced. A study using non-dimensional water supply system properties revealed that short-term drought risks can be significantly higher than long-term drought risks, increasing non-linearly as the system becomes more stressed. This work illustrates the value of using stochastic rainfall models that actively capture, climate variability. They can be considered more informative of water supply system risks than models that rely merely on the hydrological record for their calibration. Further, it is argued that the short-term dynamic drought risk approach is a useful strategic planning tool for water authorities. It represents an advance in thinking and provides a more realistic and informative estimation of drought risk than traditional long-term approaches.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resources Congress 2008
World Environmental and Water Resources Congress 2008: Ahupua'A
Pages: 1 - 10

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Benjamin J. Henley [email protected]
Discipline of Civil, Surveying and Environmental Engineering, The University of Newcastle, Callaghan, NSW, Australia, 2308;. E-mail: [email protected]
Mark A. Thyer [email protected]
Discipline of Civil, Surveying and Environmental Engineering, The University of Newcastle, Callaghan, NSW, Australia, 2308;. E-mail: [email protected]
George Kuczera [email protected]
Discipline of Civil, Surveying and Environmental Engineering, The University of Newcastle, Callaghan, NSW, Australia, 2308;. E-mail: [email protected]
Stewart Franks [email protected]
Discipline of Civil, Surveying and Environmental Engineering, The University of Newcastle, Callaghan, NSW, Australia, 2308;. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share