Chapter
Apr 26, 2012

Incorporating Parameter and Data Uncertainties in the Analysis of Energy Drought

Publication: World Environmental and Water Resources Congress 2008: Ahupua'A

Abstract

The stochastic approach is commonly employed in the probabilistic analysis of water resources systems. In this approach, a selected stochastic time series model is used to generate synthetic series that mimic the important statistical properties of observed hydrological variables. Due to the use of limited amount of data for model estimation, the estimated parameters have sampling errors. This is usually referred to as parameter uncertainty. In multi-site applications, the length of the observed records at different sites must be the same. In order to use all available data, the shorter series are extended using record extension methods. However, since extended data are not observed values, some data uncertainty is introduced. Although parameter and data uncertainties may have significant impact on the conclusions drawn from a study, they are neglected in most practical applications. In this study, an attempt is made to integrate and quantify uncertainty associated with parameters and extended data in the frequency analysis of energy drought for Manitoba Hydro, Manitoba, Canada. In the frequency analysis, a multivariate Markov-Switching model is employed in the modelling of annual streamflow data. Parameter uncertainty is then incorporated in the Markov-Switching model through Bayesian inference. In the Bayesian approach, the unknown parameters of the stochastic model are treated as random variables instead of fixed quantities. Parameter uncertainty is quantified by determining the posterior distribution of model parameters. Since the posterior distribution of the parameters cannot be derived analytically for the Markov-Switching model, a Markov chain Monte Carlo (MCMC) method is used to numerically approximate the distribution. In the MCMC method, the extended data are also treated as parameters and simulated along with the model parameters in order to quantify the combined effect of data and parameter uncertainties in the frequency analysis of energy drought.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resources Congress 2008
World Environmental and Water Resources Congress 2008: Ahupua'A
Pages: 1 - 10

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Bertugˇ Akintugˇ [email protected]
Department of Civil Engineering, Middle East Technical University, Northern Cyprus Campus, Guzelyurt, North Cyprus, Mersin 10, Turkey. E-mail: [email protected]
Peter F. Rasmussen [email protected]
Department of Civil Engineering, University of Manitoba, Winnipeg, Manitoba, Canada R3T 5V6. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share