Chapter
Apr 26, 2012

Experimental and Field Observations of Breach Dynamics Accompanying Erosion of Marmot Cofferdam, Sandy River, Oregon

Publication: World Environmental and Water Resources Congress 2008: Ahupua'A

Abstract

A key issue faced in dam removal is the rate and timing of remobilization and discharge of stored reservoir sediments following the removal. Different removal strategies can result in different trajectories of upstream sediment transport and knickpoint migration. We examine this issue of for the Marmot Dam removal in Sandy River, Oregon, USA using both physical experiments and field studies accompanying removal of the dam in October 2007. The physical experiment was designed to provide insights on how and if the position of a cofferdam notch will affect how reservoir sediments are remobilized, with the goal of minimizing the volume of sediment stranded in terraces. Data and observations indicate that at lower failure discharges, notch position impacts the location of cofferdam failure as well as the location of the first major knickpoint and its trajectory. In particular, notch positions that force the river to migrate laterally in order to adjust to natural valley orientation and morphology were most effective in removing larger volumes of sediment and reducing terrace heights. Actual cofferdam notching to maximize erosion produced extremely rapid and significant erosion of reservoir sediments. Comparison of model results with field observations suggests that the physical experiments provided solid predictions of rates of erosion and overall knickpoint trajectory.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resources Congress 2008
World Environmental and Water Resources Congress 2008: Ahupua'A
Pages: 1 - 10

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

G. E. Grant [email protected]
Pacific Northwest Research Station, U.S.D.A. Forest Service, Corvallis, OR 97331. E-mail: [email protected]
J. D. G. Marr
St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN
C. Hill
St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN
S. Johnson
St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN
K. Campbell
St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN
O. Mohseni
St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN
J. R. Wallick
Cascades Volcano Observatory, U.S. Geological Survey, Vancouver, WA
S. L. Lewis
Department of Geosciences, Oregon State University, Corvallis, OR
J. E. O'Connor
Cascades Volcano Observatory, U.S. Geological Survey, Vancouver, WA
J. J. Major
Oregon Water Sciences Center, U.S. Geological Survey, Portland, OR
B. K. Burkholder
Department of Geosciences, Oregon State University, Corvallis, OR

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share