Chapter
Apr 26, 2012

Numerical Simulation of Density Current in Chicago River Using Environmental Fluid Dynamics Code (EFDC)

Publication: World Environmental and Water Resources Congress 2008: Ahupua'A

Abstract

The Chicago Waterways System (CWS) is very complex and a complete understanding of the flow and water quality phenomena is not possible with current modeling tools. Among many interesting aspects, bi-directional flows have been observed in the Main Branch of Chicago River (MBCR) during winter time. Instead of flowing downstream into the South Branch (SB), part of the water from North Branch (NB), which usually carries runoff from a 100 square mile watershed and treated municipal sewage effluent released by the North Side Water Reclamation Plan (WRP), might flows into MBCR. This will have a huge impact on the water quality in MBCR, where the downtown Chicago is located. Physical model and field measurements of the CWS have been done to investigate the possible cause. Through these previous studies, density current has been identified as one of the main cause. A preliminary three dimensional numerical model also has been used in University of Illinois at Urbana and Champaign (UIUC) to simulate the density current. Although the bi-directional flow phenomena have been reproduced in the 3D model, the flow conditions are simplified and only very short period of time is simulated. In this paper, a three-dimensional environmental fluid dynamics code (EFDC) is used to simulate the flow in the Chicago River system (including NB, SB, and MBCR). EFDC is a public domain code which is supported by the Environmental Protection Agency (EPA) and has been widely used in many rivers and estuaries. It uses stretched or sigma vertical coordinate and Cartesian or curvilinear, orthogonal horizontal coordinate. Three-dimensional, hydrostatic, free surface, and turbulent flow equations are solved. Water quality models (such as sediment, temperature, toxics, dissolved oxygen, and biological oxygen demand) are also implemented. For this paper, the EFDC code is modified to simulate only the density current in CWS mainly due to the dissolved particles. The tests cases used in this paper are from the physical model work done in the hydrosystems lab in UIUC. The numerical model is validated and tested against the experiments. Good results have been achieved. More numerical simulations will be done to expand the parameter space. Water quality models will be activated in the future to see the environmental impact of different management strategies.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resources Congress 2008
World Environmental and Water Resources Congress 2008: Ahupua'A
Pages: 1 - 6

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Xiaofeng Liu [email protected]
Research Assistant, Ven Te Chow Hydrosystems Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana and Champaign, 205 N Mathews Ave., Urbana, IL 61801.E-mail: [email protected]
Marcelo H. Garcia [email protected]
Chester and Helen Siess Professor, and Director, Ven Te Chow Hydrosystems Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana and Champaign, 205 N Mathews Ave., Urbana, IL 61801.E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share