Chapter
Jun 20, 2012

Effective Soil Density for Small Strain Shear Wave Propagation

Publication: Geotechnical Earthquake Engineering and Soil Dynamics IV

Abstract

This paper presents an investigation of the value of soil density that controls the velocity of small strain shear waves in saturated soil. An "effective soil density" is defined that is related to the fraction of pore water that moves with the solid skeleton during shear wave propagation. Biot theory indicates that the ratio of effective soil density to saturated soil density is always ⩽ 1 and is a function of the specific gravity of solids, porosity, hydraulic conductivity, and shear wave frequency. Except for extreme cases, the effective density ratio will range from 0.75 to 1.0. For many geotechnical applications, effective soil density will be equal to saturated soil density for low hydraulic conductivity materials (clays and silts). On the other hand, consideration of effective soil density may be important for high hydraulic conductivity materials (clean sands and gravels) in some cases. The findings are relevant to applications involving the propagation of small strain shear waves through saturated soil, and in particular for laboratory and field tests in which shear modulus is back-calculated from measured shear wave velocity.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Geotechnical Earthquake Engineering and Soil Dynamics IV
Geotechnical Earthquake Engineering and Soil Dynamics IV
Pages: 1 - 9

History

Published online: Jun 20, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Assistant Professor, Department of Civil & Environmental Engineering, Clarkson University, Potsdam, New York 13699-5710. E-mail: [email protected]
Patrick J. Fox [email protected]
Professor, Department of Civil and Environmental Engineering and Geodetic Science, Ohio State University, Columbus, Ohio 43210. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share