Chapter
Apr 26, 2012

Hydraulic Transient Analysis and Leak Detection on Transmission Pipelines: Field Tests, Model Calibration, and Inverse Modeling

Publication: World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat

Abstract

The use of hydraulic transients for leak detection is theoretically possible assuming that water pipelines respond elastically and that current transient models are capable of replicating measured responses from real pipelines. This paper presents results for tests using hydraulic transients with and without a leak on a typical transmission main in South Australia. The size of the leak artificially introduced to the pipeline was set at the maximum limit of interest to South Australian Water Corporation operators. Based on the results of the field tests and modelling performed using a quasi-steady friction transient numerical model it was found that it was difficult to model the response of the pipeline, without and with the introduced leak, because of unsteady friction and mechanical dispersion and damping of the transient waveforms. Inverse analysis was performed using the quasi-steady friction transient model and it was found that leak could not be successfully detected. The transient model was improved by including unsteady friction and a "viscous" damping mechanism that was calibrated for inelastic mechanical effects using no-leak measured responses. Inverse transient analysis was performed using this improved model focussed on reflection information over 2L/a seconds of the measured leak responses and over an extended period. The small size of the direct reflections from the artificial leak made them difficult to discern amongst other reflections from elements not related to the leak. The inverse transient analysis performed over an extended period made use of leak damping information but was also affected by sources of damping not related to the leak. It was found that the improved forward transient model, in combination with prior information regarding the leak discharge (commonly available for flow monitored transmission pipelines), gave the best estimate of the location and size of the leak. However, the "true" leak was not identified as the optimal candidate following the inverse transient analysis because of persistent inadequacies in the replication of all the physical complexities affecting the measured transient responses.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resources Congress 2007
World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat
Pages: 1 - 17

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

Authors

Affiliations

Mark L. Stephens [email protected]
The University of Adelaide, Adelaide, South Australia (Australia). E-mail: [email protected]
Angus R. Simpson [email protected]
The University of Adelaide, Adelaide, South Australia (Australia). E-mail: [email protected]
Martin F. Lambert [email protected]
The University of Adelaide, Adelaide, South Australia (Australia). E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share