Chapter
Apr 26, 2012

Dealing with Unknown and Biased Errors in Hydrological Modeling - A Comparison of Kalman and H-infinity Filters

Publication: World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat

Abstract

In hydrological modeling, model and observation errors are often non-Gaussian and/or biased; and the statistical properties of the errors are often unknown or not fully known. Thus determining the true error covariance matrices is a challenge for data assimilation approaches such as the most widely used Kalman filter (KF) and its extensions. This paper compares KF to the H-infinite filter (HF), which is based on worst-case disturbance and less sensitive to uncertainty in the exogenous input statistics and simulation model structure. KF needs the assumptions of zero mean Gaussian errors but HF does not need such assumptions; KF is an optimal approach to the minimum mean square error estimation (MMSE), and it performs better than HF only under unbiased Gaussian model and observation errors whose statistics are known in advance. To compare their performance when the KF's assumptions are violated, the two filters are applied to a one-dimensional coupled soil moisture and temperature simulation model under the two error cases: biased Gaussian model error and non-stationary model errors caused by unknown, instant human interferences. HF is found to be more robust to model errors than KF. In particular, the HF estimation recovers to the true state faster than the KF right after a human interference that causes a non-stationary, unknown model error. Thus, the HF might be more appropriate for hydrological models, which need to account the impact of human interferences that are usually uncertain, unknown or estimated with biased errors compared to natural inputs such as precipitation.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resources Congress 2007
World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat
Pages: 1 - 10

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

Authors

Affiliations

Dingbao Wang [email protected]
Ven Te Chow Hydrosystems Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801. E-mail: [email protected]
Ven Te Chow Hydrosystems Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share