Chapter
Apr 26, 2012

The Use of a Novel Aerobic Wetland to Reduce Agricultural Pollutants Associated with Subsurface Tile Drainage

Publication: World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat

Abstract

Pollution from agricultural run-off is a significant contributor to the eutrophication and declining health of surface waters. Often agricultural chemicals are transported off site in subsurface tile drain lines, which act as conduits between fields and surface waters. The use of constructed wetlands has increased as a way to manage, treat, collect and reuse this wastewater stream Our research examined a novel recirculating vertical flow constructed wetland (RVFCW) as a means to collect, treat, and reuse tile drainage waters. The RVFCW is a modular system designed to reduce agricultural pollutants. The RVFCW is comprised of three modules: 1. a vegetated layer providing nutrient uptake through biomass assimilation. 2. a filtration module incorporating porous media; and 3. a recircultion module designed to enhance oxygenation of the wastewater during treatment. RVFCW's combine numerous biotic and abiotic treatment properties to provide a low cost, decentralized treatment system. Synthetic tile water, [nitrate (25 mg/L NO3–N), reactive phosphorus (0.19 mg/L) TOC (3 mg/L)] was used as a wastewater source. Four vegetated microcosms (Carex stipata) were compared to 3 non-vegetated units and to units where weeds were allowed to grow for the treatment of synthetic drainage water. Systems were recharged twice a week with 20L of synthetic tile water. Influent nutrient loads were recorded and compared to effluent loads. One vegetated unit was routinely harvested providing insight into plant nutrient uptake. After four months both types of vegetative units had reduced nitrate loads by an avg. of 62%. Effluent NO3 (N) concentrations averaged 3.5 mg/L and were below the MCL of 1Omg/L in 70% of the samples. Phosphorus removal was constant in all units. Systems with native weeds had the greatest water loss due to evapotranspiration and the highest conductivity values of all effluent samples. These results indicate the potential for significant nitrate reduction in aerobic, vegetated treatment systems. Prolific growth occurring in both sedge and weed units showed the ability of these systems to sequester both N and P throughout the growing season. The largest nutrient load reductions and evapotranspiration rates were observed in systems with native S.E. Pennsylvania weeds, demonstrating possible phytoremediative potentials for these species.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resources Congress 2007
World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat
Pages: 1 - 12

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

Authors

Affiliations

Ed Spayd
Environmental Pollution Control Program, Penn State Harrisburg, Middletown PA 17057
Katherine Baker
Environmental Pollution Control Program, Penn State Harrisburg, Middletown PA 17057
Shirley Clark
Environmental Pollution Control Program, Penn State Harrisburg, Middletown PA 17057

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share