Chapter
Apr 26, 2012

Multiobjective Optimization for Optimal Design of Urban Drainage Systems

Publication: World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat

Abstract

Control of sewer overflows, the leading cause of water pollution in the nation's water bodies, is vital to reducing risks to public health and protecting the environment. The most common solutions for mitigating sewer overflows include adding storage volume, increasing conduit capacity, expanding pumping capacity, and implementation of real time operational controls to more effectively utilize existing system storage. Obviously, comprehensive modeling and analysis of these sewer systems becomes necessary for developing sound cost-effective and reliable solutions for enhancing system integrity and performance to convey sewer flows without causing overflows. However, identification of the optimal remedial solution that effectively circumvents overflow problems with the least expenditure is a daunting task. The current practice involves a tedious trial-and-error evaluation procedure that seldom leads to the most effective or most economical solutions. Another emerging design approach utilizes single objective optimization that identifies the solution that best satisfies a predefined criterion. The performance criterion used with single objective optimization subjectively lumps the economics objective with metrics that measure effectiveness of the remedial solution from the perspective of avoiding overflows (e.g., minimizing the number of flooding events or reducing the flooding volume). Consequently, the design solution identified using single objective optimization depends on the weights subjectively placed on the two incommensurable and conflicting objectives, and may not represent the global optimal solution. A preferable approach is to seek tradeoff solutions commonly referred to as non-dominated solutions or Pareto-optimal solutions. The methodology proposed here links an extended version of the EPA SWMM 5 model, a comprehensive drainage network simulator, with NSGA-II, an evolutionary multiobjective optimization method with a proven history of identifying Pareto-optimal solutions for a wide range of engineering problems. The method should prove useful to any wastewater utility attempting to improve system integrity, reliability and performance and optimize its capital improvement program.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resources Congress 2007
World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat
Pages: 1 - 10

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

Authors

Affiliations

Misgana K. Muleta
No affiliation information available.
Paul F. Boulos
No affiliation information available.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share