Abstract

Traditional assessment of surface water quality based on gap samples of discrete dissolved oxygen (DO) is often limited by large diurnal fluctuations. A common reference time for DO measurements is needed for better assessments of differences among water bodies and for identifying changes with time. Two different models have been developed by the authors to convert a DO measurement at any diurnal time to a DO value at a reference time. Both models are based on an extended stochastic harmonic analysis (ESHA). One of the models is formulated using the fraction of DO saturation. It requires real-time (continuous) and discrete data for both DO and water temperature for parameter estimation and an observed DO value with water temperature data in its application. The other model is formulated using only DO and, therefore, does not require water temperature data in estimating parameters as well as in application. Both models were evaluated for the same network of different stream sites across Minnesota, incorporating effects of different ecoregions and variable drainage areas. This paper draws contrasts between the frameworks and performances of the two models. Data were normalized in both cases to increase the general applicability of the fitted parameters. Each of the algorithms revealed good performance in representing observed diurnal variations in DO. For the fraction of DO saturation model, the root mean square error (RMSE) of predicting hourly DO and standard DO ranged from 0.43 to 0.77 mg/L and 0.37 to 0.90 mg/L among the five streams, respectively. In contrast, the RMSE for predicting hourly DO and standard DO respectively ranged from 0.53 to 0.80 mg/L and 0.44 to 0.91 mg/L with the DO only model. While the two models showed nearly equivalent modeling accuracy and consistency, the DO only model added to the elegance of ESHA algorithm for its simpler framework and single parameter (i.e., DO) input data requirement. Both models are useful tools for total maximum daily load (TMDL) assessment of aquatic ecosystem health across a range of temporal and spatial scales.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resources Congress 2007
World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat
Pages: 1 - 11

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

Authors

Affiliations

Bruce N. Wilson [email protected]
Professor, Dept. of Bioproducts and Biosystems Engineering, University of Minnesota Twin Cities, 1390 Eckles Avenue, St. Paul, MN55108,. E-mail: [email protected]
Joseph T. & Rose S. Ling Professor, Dept. of Civil Engineering, University of Minnesota, Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, MN55455. E-mail: [email protected] and Saint Anthony Falls Laboratory, 2 Third Avenue SE Minneapolis, MN 55414

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share