Some features of the ASCE Shopping cart and login features of the website will be down for maintenance on Sunday, June 16th, 2024, beginning at 12:00 A.M. ET and ending at 6:00 A.M. ET. During this time if you need immediate assistance at 1-800-548-2723 or [email protected].

Chapter
Apr 26, 2012

Investigation of Flow Around a Bridge Abutment in a Flat Bed Channel Using Large Eddy Simulation

Publication: World Environmental and Water Resource Congress 2006: Examining the Confluence of Environmental and Water Concerns

Abstract

Large Eddy Simulation (LES) is used to numerically investigate the horseshoe vortex (HV) system around a vertical bridge abutment located on a flat bed in a straight channel with vertical lateral walls corresponding to conditions at the initiation of the scour process. The simulation is performed with upstream fully turbulent flow including the turbulent fluctuations obtained from a precalculated LES simulation. The dynamics of the instantaneous coherent structures associated with the HV system around the base of the abutment and the spectral content of the flow in this region are analyzed. Due to the flat bed conditions, for which the HV system is not stabilized by the presence of the scour hole, very large random variations in the structure, position, size and overall intensity of the turbulent HV system are observed. In particular, the HV system appears to oscillate between a zero-flow mode in which the main HV is situated closer to the abutment and the near-bed jet flow beneath it is weak and separates early, and a back-flow mode in which the near-bed jet flow is stronger and separates at a larger distance from the abutment, and the main HV eddy is larger. It is observed that the legs of the horseshoe vortices can interact, at times, with the eddies shed inside the detached shear layer (DSL). The distribution of the bed shear stress shows that the largest values are present in the strong acceleration region near the tip of the abutment, but high bed shear stress values are observed beneath the HV system. It is found that the bed shear stress fluctuations around the local mean values can be very high, especially in the region beneath the separated shear layer. The pressure fluctuations and resolved kinetic energy levels are found to be very high inside the HV region compared to the surrounding flow. These high values are produced primarily by the low-frequency chaotic switching of the HV system between the zero-flow mode and the back-flow mode.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resource Congress 2006
World Environmental and Water Resource Congress 2006: Examining the Confluence of Environmental and Water Concerns
Pages: 1 - 11

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Mete Koken
Department of Civil & Environmental Engineering & IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242
George Constantinescu [email protected]
Department of Civil & Environmental Engineering & IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242;. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share