Some features of the ASCE Shopping cart and login features of the website will be down for maintenance on Sunday, June 16th, 2024, beginning at 12:00 A.M. ET and ending at 6:00 A.M. ET. During this time if you need immediate assistance at 1-800-548-2723 or [email protected].

Chapter
Apr 26, 2012

Applying a Vadose Zone Model to Stormwater Infiltration

Publication: World Environmental and Water Resource Congress 2006: Examining the Confluence of Environmental and Water Concerns

Abstract

Urbanization has been responsible for an increase in the amount of impervious surfaces, leading to an increase in stormwater runoff and a decrease in groundwater recharge. Stormwater runoff contains pollutants, such as nutrients, pathogens, heavy metals, solids, organic compounds, pesticides, and chlorides, which have greatly contributed to the degradation of receiving waters due to surface discharge of stormwater. This has prompted stormwater managers to consider implementing more infiltration practices into their designs. However, past studies have shown that infiltrating stormwater could contaminate the groundwater, and in some cases contamination actually has occurred. Therefore, methods for easily predicting contamination potential need to be developed. Stormwater pollutants interact with the soils in the unsaturated zone as they migrate towards the groundwater. The specific type of soil and its properties have a profound effect on the movement of water and pollutants. Zinc and sodium chloride were chosen to be the pollutants of interest because of their prevalence in stormwater, solubility, and differing migration rates. Through the use of the SESOIL model, factors such as pollutant concentration, rainfall, vadose zone thickness, intrinsic permeability, organic content, and soil pH were evaluated to determine which ones have the greatest influence on pollutant migration. A factorial analysis (26 full factorial) was used to evaluate the effects of these factors on the maximum penetration depth of zinc and sodium chloride. High and low values for the factors were selected from the literature and the NRCS soils database. The pollutants were treated as separate ions (Zn+2, Na+, Cl), and the length of each simulation was set at 1 year. Results indicated that rainfall was a common factor controlling Zn+2, Na+, and Cl migration. Concentration was also influential in Zn+2 migration, while intrinsic permeability affected Na+ and Cl.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resource Congress 2006
World Environmental and Water Resource Congress 2006: Examining the Confluence of Environmental and Water Concerns
Pages: 1 - 10

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

J. B. Mikula [email protected]
Penn State Harrisburg, 777 West Harrisburg Pike, TL 105, Middletown, PA, 17057. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share