Some features of the ASCE Shopping cart and login features of the website will be down for maintenance on Sunday, June 16th, 2024, beginning at 12:00 A.M. ET and ending at 6:00 A.M. ET. During this time if you need immediate assistance at 1-800-548-2723 or [email protected].

Chapter
Apr 26, 2012

An Efficient Numerical Scheme for Modeling Two-Phase Bubbly Homogeneous Air-Water Mixtures

Publication: World Environmental and Water Resource Congress 2006: Examining the Confluence of Environmental and Water Concerns

Abstract

This paper focuses on the formulation and assessment of a second-order accurate Finite Volume (FV) shock-capturing scheme for modeling two-phase water hammer flows using the single-equivalent fluid approximation. The FV formulation of the proposed scheme ensures that mass and momentum are conserved. For achieving a second-order rate of convergence for smooth transients (i.e., flows that do not present discontinuities), a second-order boundary condition is implemented using virtual cells and the theory of Riemann invariants, which is similar to that used for the Method of Characteristics (MOC). Since the two-phase flow governing equations when using the single-equivalent fluid approximation are the same as the one-phase water hammer equations (with exception that the pressure-wave celerity is constant in the latter case), and because analytical solutions are available for the latter case, the numerical efficiency of the proposed model is tested using the one-phase water hammer equations with constant pressure-wave celerity. The validity of the single-equivalent fluid approximation and the proposed scheme herein are verified with laboratory experiments. For one-phase transient flows, numerical tests were performed for smooth and strong transients. For smooth transients, the results show that the efficiency of the proposed scheme is highly superior to the fixed-grid MOC scheme with space-line interpolation and another second-order FV scheme. For one-phase strong transient flows, the results show that the efficiency of the proposed scheme is highly superior to the MOC scheme, and significantly superior to the other FV scheme for coarse grids. For fine grids, the accuracy of the proposed scheme converges to that of the other FV scheme. For two-phase water hammer flows, the results show good agreement between experimental data and the results of numerical simulations.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resource Congress 2006
World Environmental and Water Resource Congress 2006: Examining the Confluence of Environmental and Water Concerns
Pages: 1 - 10

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Arturo S. León [email protected]
Ph.D. Candidate, Dept. of Civil and Envir. Engineer, University of Illinois, Urbana, Illinois 61801. E-mail: [email protected]
Mohamed S. Ghidaoui [email protected]
Associate Professor, Dept. of Civil Eng., The Hong Kong Univ. of Science and Technology, Hong Kong. E-mail: [email protected]
Arthur R. Schmidt [email protected]
Research Assistant Professor, Dept. of Civil and Envir. Eng., University of Illinois, Urbana, IL 61801. E-mail: [email protected]
Marcelo H. García [email protected]
Chester and Helen Siess Professor and Director of the Ven Te Chow Hydrosystems Lab., Dept. of Civil and Envir. Eng., Univ. of Illinois, Urbana, IL 61801. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share