Some features of the ASCE Shopping cart and login features of the website will be down for maintenance on Sunday, June 16th, 2024, beginning at 12:00 A.M. ET and ending at 6:00 A.M. ET. During this time if you need immediate assistance at 1-800-548-2723 or [email protected].

Chapter
Apr 26, 2012

Autonomous Architecture Proposal for Summit Science Station in Greenland

Publication: Earth & Space 2006: Engineering, Construction, and Operations in Challenging Environment

Abstract

This paper reports results of collaboration between the Sasakawa International Center for Space Architecture (SICSA), Houston, USA and the Applied Computing and Mechanics Laboratory (IMAC), Lausanne, Switzerland. A design project has been initiated in response to growing international scientific research interest at Summit Station in Greenland and a requirement for better accommodation and support. Research at IMAC involves the study of intelligent cable-strut structures that are adaptable and self repairing. An architectural and engineering development approach as well as conceptual proposals for the Summit Station in Greenland for science research and operational support is proposed. The proposed facility in Greenland supports 50 people during the summer season and 25 people during the wintertime. Primary elements of the modular configuration include a triangular platform with two upper floors that is supported by three jacking columns. This approach means that structure can be adjusted to accommodate differential settlement of supports. An adaptable apron structure around the primary platform is used to modify the form of the underside of the platform to maintain predetermined clearance criteria between the structure and level below, thereby avoiding excessive snow accumulating around the building and minimizing drifting and scour underneath it (on Mars, dust storms might be the difficulty). A separate structure for a mechanical shop and power support is added to complete the initial configuration. Important priorities are to provide a high quality environment and to minimize development, construction and operational costs while optimizing safety, versatility, autonomy and human factors. Testing of a plywood model of the primary facility that was installed in Summit in May 2005 and a wind tunnel model at EPFL confirmed that if the structure was not sufficiently elevated, drifting could bury it. Important parameters are the shape of the building, the form of the bottom of the platform, snow accumulation points, snow drift distribution, wind direction, wind speed and distance between the structure and the snow surface.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Earth & Space 2006
Earth & Space 2006: Engineering, Construction, and Operations in Challenging Environment
Pages: 1 - 9

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

Authors

Affiliations

Olga Bannova
No affiliation information available.
Ian F. C. Smith
No affiliation information available.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share