Chapter
May 7, 2012

Pipe Pile Stone Columns at Webster Street Tube, Oakland, California

Publication: Innovations in Grouting and Soil Improvement

Abstract

This paper presents state-of-the art and practice for an innovative seismic retrofit of the historic Webster Street Tube in the San Francisco Bay area of California. The Webster Street Tube, along with the adjoining Posey tube, forms an underwater link between the Cities of Oakland and Alameda. The Webster Street Tube is located between two major faults, the Hayward Fault and the San Andreas Fault. The Posey Tube, completed in 1928, was the first pre-cast underwater tunnel to be built. Approximately 40 years later, the Webster Street Tube was built parallel to and 500 feet west of the Posey Tube. Construction of the both tubes required excavation and backfilling of a trench along an approximately 3,200-foot stretch of alignment over land and water. During a major earthquake, sandy backfill materials and the sand bedding immediately below the tubes would be susceptible to liquefaction, resulting in the loss of soil strength. Consequently, the tubes would become buoyant in the heavily liquefied material, causing substantial displacements and damage. The seismic retrofit consisted of installing stone columns along both sides of the Webster Street Tube. The pipe pile stone column method is the first of its kind to be applied to an immersed tube of this magnitude in the world. The objective of the seismic retrofit was to prevent flotation of the tube due to liquefaction of the sandy soils underneath the tube as well as to densify the surrounding saturated sandy backfill material. This paper discusses (1) the use of pipe pile stone columns to density the loose to very loose saturated sandy backfill surrounding the tube, and confine the loose to very loose sandy soil immediately under the tube — an innovative design to isolate and control the liquefied sand below the tube in place; (2) the overall practicality and constructability of using pipe pile stone columns to density loose saturated sands to silty sands; (3) the impact of the pipe pile stone columns in densifying the in situ soils by means of displacement and vibratory action of the pipe piles; and (4) results of field testing via pre- and post-construction borings and Cone Penetration Tests (CPTs). These are followed by a discussion of lessons learned from conducting the construction of the pipe pile stone columns over water and on land.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Innovations in Grouting and Soil Improvement
Innovations in Grouting and Soil Improvement
Pages: 1 - 15

History

Published online: May 7, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Thomas S. Lee
Parsons Brinckerhoff Quade & Douglas, Inc.; Member, MSc.; 303 2nd Street, Suite 700N, San Francisco, CA 94107
Umakant Dash
California Department of Transportation; Member, PhD.; 1801 30th Street, Sacramento, CA 95816
Randy Anderson
California Department of Transportation; Member, BSc.; 1801 30th Street, Sacramento, CA 95816

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share