Chapter
Apr 26, 2012

Advanced Characterization of Granular Materials for Mechanistic Based Pavement Design

Publication: Pavement Subgrade, Unbound Materials, and Nondestructive Testing

Abstract

The recent adoption and use of mechanistic concepts in pavement design made it possible to more realistically characterize the unbound aggregates component of the pavement by incorporating the new advances in characterization, i.e., anisotropic, stress path dependent behavior, and accounting for the most damaging field conditions. This paper mainly focuses on the use of a unique triaxial testing machine, referred to as University of Illinois FastCell (UI-FastCell), for determining in the laboratory the stress-induced anisotropic resilient properties of twelve aggregates with varying material types and properties. In the selection process, consideration was given to both "good" and "poor" performing granular base/subbase materials obtained from seven different states. With the applied AASHTO T294-94 stress states conveniently pulsed either in the vertical or horizontal direction on the same specimen, the anisotropy (directional dependency) of resilient moduli are adequately determined in the laboratory for the compression and extension type dynamic loadings. Nonlinear stress dependent models are developed to characterize the resilient moduli under these extreme loadings. The moduli obtained under extension stress states are in general lower than the ones computed from compression tests. Such lower moduli would result in higher critical pavement responses as obtained from the mechanistic analysis of a conventional flexible pavement and be associated with the reduced pavement life eventually. The most significant stress history effect is observed for the materials having moderate amount of fines. Finally, anisotropic (horizontal to vertical) modular ratios corresponding to horizontal (extension) and vertical pulsing (compression) conditions are shown to either increase or decrease with increasing applied dynamic stresses depending on the material properties, i.e., quality of an aggregate.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Pavement Subgrade, Unbound Materials, and Nondestructive
                Testing
Pavement Subgrade, Unbound Materials, and Nondestructive Testing
Pages: 51 - 72

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

Authors

Affiliations

Umit Seyhan
S.M.ASCE
Graduate Research Assistant, Department of Civil and Environmental Engineering University of Illinois, 205 N. Mathews, Urbana, IL 61801.
Erol Tutumluer
M.ASCE
Assistant Professor, Department of Civil and Environmental Engineering University of Illinois, 205 N. Mathews, Urbana, IL 61801.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$43.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$43.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share