Technical Papers
Jul 24, 2019

Objective Functions for Transient-Based Pipeline Leakage Detection in a Noisy Environment: Least Square and Matched-Filter

This article has been corrected.
VIEW CORRECTION
Publication: Journal of Water Resources Planning and Management
Volume 145, Issue 10

Abstract

This paper addresses leak detection in the presence of measurement noise using the inverse transient method (ITM). The unknown leak parameters are determined by optimizing a merit function, which fits the numerically modeled pressures to measurements. Traditionally, the fitting is accomplished by a least-square (LS) objective function that minimizes the L2 distance between the model and data. However, in practical problems where the environment is noisy, the minimum L2 distance may result in some fictitious leaks. This paper proposes an alternative objective function, known as matched-filter (MF) in the literature, which is expected to produce a more robust localization in a noisy environment because it maximizes the signal-to-noise ratio (SNR). This function is then compared with the conventional LS approach by assessment of leak-detection accuracy. It was proved that the MF estimator has smaller mean square error of leak localization than LS when signals have high noise level (SNR3  dB). For a low noise level, the two estimators converge to the same results. The conclusions were supported by numerical and experimental case studies.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code generated or used during the study are available from the corresponding author by request.

Acknowledgments

This work has been supported by Research Grant Council of the Hong Kong SAR, China (Project No. T21-602/15R). Support from Italian MIUR and University of Perugia is also acknowledged within the program Dipartimenti di Eccellenza 2018–2022. The authors would also like to thank all team members of Smart UWSS.

References

Baggeroer, A. B., W. A. Kuperman, and P. N. Mikhalevsky. 1993. “An overview of matched field methods in ocean acoustics.” IEEE J. Oceanic Eng. 18 (4): 401–424. https://doi.org/10.1109/48.262292.
Bajorski, P. 2007. “Analytical comparison of the matched filter and orthogonal subspace projection detectors for hyperspectral images. Geoscience and remote sensing.” IEEE Trans. Geosci. Remote Sens. 45 (7): 2394–2402. https://doi.org/10.1109/TGRS.2007.896544.
Brunone, B. 1999. “Transient test-based technique for leak detection in outfall pipes.” J. Water Resour. Plann. Manage. 125 (5): 302–306. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:5(302).
Brunone, B., and A. Berni. 2010. “Wall shear stress in transient turbulent pipe flow by local velocity measurement.” J. Hydraul. Eng. 136 (10): 716–726. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000234.
Brunone, B., and M. Ferrante. 2010. “Detecting leaks in pressurized pipes by means of transients.” J. Hydraul. Res. 39 (5): 539–547. https://doi.org/10.1080/00221686.2001.9628278.
Brunone, B., M. Ferrante, and S. Meniconi. 2008. “Portable pressure wave-maker for leak detection and pipe system characterization.” J. Am. Water Works Assoc. 100 (4): 108–116. https://doi.org/10.1002/j.1551-8833.2008.tb09607.x.
Brunone, B., S. Meniconi, and C. Capponi. 2018. “Numerical analysis of the transient pressure damping in a single polymeric pipe with a leak.” Urban Water J. 15 (8): 760–768. https://doi.org/10.1080/1573062X.2018.1547772.
Brunone, B., and L. Morelli. 1999. “Automatic control valve induced transients in an operative pipe system.” J. Hydraul. Eng. 125 (5): 534–542. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:5(534).
Casella, G., and R. L. Berger. 2002. Statistical inference. 2nd ed. Pacific Grove, CA: Duxbury/Thomson Learning.
Chaudhry, M. H. 2014. Applied hydraulic transients. 3rd ed. Berlin: Springer.
Colombo, A. F., P. Lee, and B. W. Karney. 2009. “A selective literature review of transient-based leak detection methods.” J. Hydro-Environ. Res. 2 (4): 212–227. https://doi.org/10.1016/j.jher.2009.02.003.
Covas, D., and H. Ramos. 2010. “Case studies of leak detection and location in water pipe systems by inverse transient analysis.” J. Water Res. Plann. Manage. 136 (2): 248–257. https://doi.org/10.1061/(ASCE)0733-9496(2010)136:2(248).
Covas, D., H. Ramos, and A. B. De Almeida. 2005. “Standing wave difference method for leak detection method in pipeline systems.” J. Hydraul. Eng. 131 (12): 1106–1116. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:12(1106).
Covas, D., I. Stoianov, J. Mano, H. Ramos, N. Graham, and C. Maksimovic. 2010a. “The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part I—Experimental analysis and creep characterization.” J. Hydraul. Res. 42 (5): 517–532. https://doi.org/10.1080/00221686.2004.9641221.
Covas, D., I. Stoianov, J. Mano, H. Ramos, N. Graham, and C. Maksimovic. 2010b. “The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part II—Model development, calibration and verification.” J. Hydraul. Res. 43 (1): 56–70. https://doi.org/10.1080/00221680509500111.
Duan, H., S. Meniconi, P. Lee, B. Brunone, and H. Ghidaoui. 2017. “Local and integral energy-based evaluation for the unsteady friction relevance in transient pipe flows.” J. Hydraul. Eng. 143 (7): 04017015. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001304.
Duan, H. F., P. J. Lee, M. S. Ghidaoui, and Y. K. Tung. 2011. “Leak detection in complex series pipelines by using the frequency response method.” J. Hydraul. Res. 49 (2): 213–221. https://doi.org/10.1080/00221686.2011.553486.
Ferrante, M., B. Brunone, and S. Meniconi. 2007. “Wavelets for the analysis of transient pressure signals for leak detection.” J. Hydraul. Eng. 133 (11): 1274–1282. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:11(1274).
Forney, G. 1972. “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference.” IEEE Trans. Inf. Theory 18 (3): 363–378. https://doi.org/10.1109/TIT.1972.1054829.
Fuchs, J. 2009. “Identification of real sinusoids in noise, the global matched filter approach.” IFAC Proc. Volumes 42 (10): 1127–1132. https://doi.org/10.3182/20090706-3-FR-2004.00187.
Gao, Y., M. J. Brennan, and P. F. Joseph. 2006. “A comparison of time delay estimators for the detection of leak noise signals in plastic water distribution pipes.” J. Sound Vib. 292 (3): 552–570. https://doi.org/10.1016/j.jsv.2005.08.014.
Gong, J., A. C. Zecchin, A. R. Simpson, and M. F. Lambert. 2014. “Frequency response diagram for pipeline leak detection: Comparing the odd and even harmonics.” J. Water Res. Plann. Manage. 140 (1): 65–74. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000298.
Guo, C., Y. Wen, P. Li, and J. Wen. 2016. “Adaptive noise cancellation based on EMD in water-supply pipeline leak detection.” Measurement 79 (Feb): 188–197. https://doi.org/10.1016/j.measurement.2015.09.048.
Haghighi, A., and H. Ramos. 2012. “Detection of leakage freshwater and friction factor calibration in drinking networks using central force optimization.” Water Resour. Manage. 26 (8): 2347–2363. https://doi.org/10.1007/s11269-012-0020-6.
Jaranowski, P., and A. Królak. 2012. “Gravitational-wave data analysis. Formalism and sample applications: The Gaussian case.” Living Rev. Relativ. 15 (1): 1–47. https://doi.org/10.12942/lrr-2012-4.
Johnson, D. H., and D. E. Dudgeon. 1993. Array signal processing: Concepts and techniques. Upper Saddle River, NJ: Prentice Hall.
Kapelan, Z. S., D. A. Savic, and G. A. Walters. 2010. “A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks.” J. Hydraul. Res. 41 (5): 481–492. https://doi.org/10.1080/00221680309499993.
Keramat, A., M. Ghidaoui, X. Wang, and M. Louati. 2019. “Cramer-Rao lower bound for performance analysis of leak detection.” J. Hydraul. Eng. 145 (6): 04019018. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001603.
Keramat, A., M. S. Ghidaoui, and X. Wang. 2017. “Inverse transient analysis for pipeline leak detection in a noisy environment.” In Proc., 37th IAHR World Congress. Paris: HAL.
Keramat, A., and A. Haghighi. 2014. “Straightforward transient-based approach for the creep function determination in viscoelastic pipes.” J. Hydraul. Eng. 140 (12): 04014058. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000929.
Keramat, A., A. Kolahi, and A. Ahmadi. 2013. “Waterhammer modelling of viscoelastic pipes with a time-dependent Poisson’s ratio.” J. Fluids Struct. 43 (Nov): 164–178. https://doi.org/10.1016/j.jfluidstructs.2013.08.013.
Kim, S. H. 2005. “Extensive development of leak detection algorithm by impulse response method.” J. Hydraul. Eng. 131 (3): 201–208. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:3(201).
Krim, H., and M. Viberg. 1996. “Two decades of array signal processing research.” IEEE Signal Process. Mag. 13 (4): 67–94. https://doi.org/10.1109/79.526899.
Lee, P. J., H. F. Duan, M. Ghidaoui, and B. Karney. 2013. “Frequency domain analysis of pipe fluid transient behaviour.” J. Hydraul. Res. 51 (6): 609–622. https://doi.org/10.1080/00221686.2013.814597.
Lee, P. J., J. P. Vítkovský, M. F. Lambert, A. R. Simpson, and J. Liggett. 2005. “Leak location using the pattern of the frequency response diagram in pipelines: A numerical study.” J. Sound Vib. 284 (3): 1051–1073. https://doi.org/10.1016/j.jsv.2004.07.023.
Lenoir, B. 2014. “A general approach of least squares estimation and optimal filtering.” Optim. Eng. 15 (3): 609–617. https://doi.org/10.1007/s11081-013-9217-7.
Liggett, J. A., and L. C. Chen. 1994. “Inverse transient analysis in pipe networks.” J. Hydraul. Eng. 120 (8): 934–955. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:8(934).
Liou, C. P. 1998. “Pipeline leak detection by impulse response extraction.” J. Fluids Eng. 120 (4): 833–838. https://doi.org/10.1115/1.2820746.
Liu, J. J., Z. Zhang, and Y. Yang. 2012. “Optimal waveform design for generalized likelihood ratio and adaptive matched filter detectors using a diversely polarized antenna.” Signal Process. 92 (4): 1126–1131. https://doi.org/10.1016/j.sigpro.2011.11.006.
Loeve, M. 1977. “Probability theory.” In Vol. 45 of Graduate texts in mathematics. 4th ed. Berlin: Springer.
Meniconi, S., B. Brunone, and M. Ferrante. 2012. “Water-hammer pressure waves interaction at cross-section changes in series in viscoelastic pipes.” J. Fluids Struct. 33: 44–58. https://doi.org/10.1016/j.jfluidstructs.2012.05.007.
Meniconi, S., B. Brunone, M. Ferrante, C. Capponi, C. A. Carrettini, C. Chiesa, D. Segalini, and E. A. Lanfranchi. 2015. “Anomaly pre-localization in distribution-transmission mains. Preliminary field tests in the Milan pipe system.” J. Hydroinf. 17 (3): 377–389. https://doi.org/10.2166/hydro.2014.038.
Meniconi, S., B. Brunone, M. Ferrante, and C. Massari. 2011. “Transient tests for locating and sizing illegal branches in pipe systems.” J. Hydroinf. 13 (3): 334–345. https://doi.org/10.2166/hydro.2011.012.
Meniconi, S., B. Brunone, M. Frisinghelli, E. Mazzetti, M. Larentis, and C. Costisella. 2017. “Safe transients for pipe survey in a real transmission main by means of a portable device: The case study of the trento (i) supply system.” Procedia Eng. 186: 228–235. https://doi.org/10.1016/j.proeng.2017.03.232.
Misiunas, D., J. Vítkovský, G. Olsson, A. Simpson, and M. Lambert. 2005. “Pipeline break detection using transient monitoring.” J. Water Resour. Plann. Manage. 131 (4): 316–325. https://doi.org/10.1061/(ASCE)0733-9496(2005)131:4(316).
Mpesha, W., S. L. Gassman, and M. H. Chaudhry. 2001. “Leak detection in pipes by frequency response method.” J. Hydraul. Eng. 127 (2): 134–147. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:2(134).
Oppenheim, A. V., and R. W. Schafer. 2010. Discrete-time signal processing. 3rd ed. Upper Saddle River, NJ: Prentice Hall.
Papoulis, A., and S. U. Pillai. 2002. Probability, random variables, and stochastic processes. Boston: McGraw-Hill.
Pezzinga, G., B. Brunone, D. Cannizzaro, M. Ferrante, S. Meniconi, and A. Berni. 2014. “Two-dimensional features of viscoelastic models of pipe transients.” J. Hydraul. Eng. 140 (8): 04014036. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000891.
Pezzinga, G., B. Brunone, and S. Meniconi. 2016. “On the relevance of pipe period on Kelvin-Voigt viscoelastic parameters: 1D and 2D inverse transient analysis.” J. Hydraul. Eng. 142 (12): 04016063. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001216.
Santos-Ruiz, I., J. R. Bermúdez, F. R. López-Estrada, V. Puig, L. Torres, and J. A. Delgado-Aguiñaga. 2018. “Online leak diagnosis in pipelines using an EKF-based and steady-state mixed approach.” Control Eng. Pract. 81 (Dec): 55–64. https://doi.org/10.1016/j.conengprac.2018.09.006.
Tandra, R., and A. Sahai. 2005. “Fundamental limits on detection in low SNR under noise uncertainty.” In Vol. 1 of Proc., Int. Conf. on Wireless Networks, Communications and Mobile Computing, 464–469. Piscataway, NJ: IEEE.
Theiler, J., B. R. Foy, and A. M. Fraser. 2007. “Beyond the adaptive matched filter: Nonlinear detectors for weak signals in high-dimensional clutter.” In Proc., SPIE 6565, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII. Los Alamos, NM: Los Alamos National Laboratory.
Vardy, A. E., and J. M. B. Brown. 2003a. “Transient turbulent friction in fully-rough pipe flows.” J. Sound Vib. 270 (1–2): 233–257. https://10.1016/S0022-460X(03)00492-9.
Vardy, A. E., and J. M. B. Brown. 2003b. “Transient turbulent friction in smooth pipe flows.” J. Sound Vib. 259 (5): 1011–1036. https://doi.org/10.1006/jsvi.2002.5160.
Viterbi, A. J. 1967. “Error bounds for convolutional codes and an asymptotically optimum decoding algorithm.” IEEE Trans. Inf. Theory 13 (2): 260–269. https://doi.org/10.1109/TIT.1967.1054010.
Vítkovský, J. P., A. Bergant, A. R. Simpson, A. E. Vardy, and M. F. Lambert. 2006. “Systematic evaluation of one-dimensional unsteady friction models in simple pipelines.” J. Hydraul. Eng. 132 (7): 696–708. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:7(696).
Vítkovský, J. P., M. Lambert, A. Simpson, and J. Liggett. 2007. “Experimental observation and analysis of inverse transients for pipeline leak detection.” J. Water Resour. Plann. Manage. 132 (7): 519–530. https://doi.org/10.1061/(ASCE)0733-9496(2007)133:6(519).
Vítkovský, J. P., J. A. Liggett, A. R. Simpson, and M. F. Lambert. 2003. “Optimal measurement site locations for inverse transient analysis in pipe networks.” J. Water Resour. Plann. Manage. 129 (6): 480–492. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:6(480).
Vítkovský, J. P., A. R. Simpson, and M. F. Lambert. 2000. “Leak detection and calibration using transients and genetic algorithms.” J. Water Resour. Plann. Manage. 126 (4): 262–265. https://doi.org/10.1061/(ASCE)0733-9496(2000)126:4(262).
Wang, X., and M. S. Ghidaoui. 2018a. “Identification of multiple leaks in pipeline: Linearized model, maximum likelihood, and super-resolution localization.” Mech. Syst. Sig. Process. 107 (Jul): 529–548. https://doi.org/10.1016/j.ymssp.2018.01.042.
Wang, X., and M. S. Ghidaoui. 2018b. “Pipeline leak detection using the matched-field processing method.” J. Hydraul. Eng. 144 (6): 04018030. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001476.
Wang, X., and M. S. Ghidaoui. 2019. “Identification of multiple leaks in pipeline II: Iterative beamforming and leak number estimation.” Mech. Syst. Sig. Process. 119 (Mar): 346–362. https://doi.org/10.1016/j.ymssp.2018.09.020.
Wang, X., B. Quost, J. D. Chazot, and J. Antoni. 2016. “Estimation of multiple sound sources with data and model uncertainties using the EM and evidential EM algorithms.” Mech. Syst. Sig. Process. 66 (Jan): 159–177. https://doi.org/10.1016/j.ymssp.2015.06.011.
Wang, X. J., M. F. Lambert, A. R. Simpson, J. A. Liggett, and J. P. Vítkovský. 2002. “Leak detection in pipelines using the damping of fluid transients.” J. Hydraul. Eng. 128 (7): 697–711. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:7(697).
Weinerowska-Bords, K. 2007. “Accuracy and parameter estimation of elastic and viscoelastic models of the water hammer.” Task Q. 11 (4): 383–395.
Xu, X., and B. Karney. 2017. “An overview of transient fault detection techniques.” In Modeling and monitoring of pipelines and networks, 13–37, edited by C. Verde and L. Torres. Berlin: Springer.
Zielke, W. 1968. “Frequency-dependent friction in transient pipe flow.” J. Basic Eng. 90 (1): 109–115. https://doi.org/10.1115/1.3605049.

Information & Authors

Information

Published In

Go to Journal of Water Resources Planning and Management
Journal of Water Resources Planning and Management
Volume 145Issue 10October 2019

History

Received: Aug 1, 2018
Accepted: Feb 20, 2019
Published online: Jul 24, 2019
Published in print: Oct 1, 2019
Discussion open until: Dec 24, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Research Associate, Dept. of Civil and Environmental Engineering, Hong Kong Univ. of Science and Technology, Clear Water Bay, Hong Kong, China (corresponding author). ORCID: https://orcid.org/0000-0002-6280-4931. Email: [email protected]
Research Associate, Dept. of Civil and Environmental Engineering, Hong Kong Univ. of Science and Technology, Clear Water Bay, Hong Kong, China. Email: [email protected]
Moez Louati [email protected]
Research Associate, Dept. of Civil and Environmental Engineering, Hong Kong Univ. of Science and Technology, Clear Water Bay, Hong Kong, China. Email: [email protected]
Silvia Meniconi [email protected]
Associate Professor, Dipartmento di Ingegneria Civile ed Ambientale, Università di Perugia, Via G. Duranti 93, Perugia 06125, Italy. Email: [email protected]
Professor, Dipartmento di Ingegneria Civile ed Ambientale, Università di Perugia, Via G. Duranti 93, Perugia 06125, Italy. ORCID: https://orcid.org/0000-0002-7106-2116. Email: [email protected]
Mohamed S. Ghidaoui, M.ASCE [email protected]
Chinese Estates Professor of Engineering and Chair Professor, Dept. of Civil and Environmental Engineering, Hong Kong Univ. of Science and Technology, Clear Water Bay, Hong Kong, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share