Technical Papers
Apr 23, 2022

Impact Resistance of the Cement–Mortar Composite Modified with SiO2 Nanoparticles and Microfiber

Publication: Journal of Materials in Civil Engineering
Volume 34, Issue 7

Abstract

Portland cement composites modified with hydrothermal SiO2 nanoparticles (0.01–3.0 wt.%) and basalt microfiber (1.5 wt.%) with W/C=0.4 were developed. At different doses of SiO2 nanoparticles aged 1–28 days in combination with the microfiber, the compressive strength Fcom (up to 51.1 MPa, 1.5 times higher than the specimen without nanoparticles and microfiber) and flexural strength Fflex (up to 13.2 MPa, 3.4 times) after 28 days of aging were determined. In addition, the impact viscosity, the number of blows before the first fracture Nff and before ultimate failure Ncd, impact coefficient Niv=Ncd/Nff (up to 30; 2.72 times), and specific energy of impact destruction (up to 199.4  kJ/m2, 22.2 times) were calculated. Synergetic effects of the combined action of different scale modifiers on Fflex28 (1.29 times) and on Ncd and Eim/Sc (1.95 times) were revealed. Statistical correlations with high R2 values were obtained between the characteristics, (Ncd,Nff)(Fcom28,Fflex28) and (Fflex1,7,28, Fcom1,7,28), (Nff, Ncd, Niv) and dose of SiO2 nanoparticles, which can used for the design of concrete structures and reduction of cement consumption. The mechanism of the strong synergetic effect of this combination can be explained by the increased volume fraction of the high density (HD) phase of the calcium silicate hydrates (CSH) gel with more packed nanogranules in a basic volume of cement matrix and interfacial transition zone (ITZ) and the increase in the shear stress of the CSH gel relative to the lateral microfiber surfaces inside the HD phase volume.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors are grateful for the kindly sharing of publications: Stephan Dietmar (Technical University, Berlin, Germany), Murali G. (School of Civil Engineering, SASTRA University, Thanjavur, India), Abhilash P. P. [Department of Civil Engineering, Indian Institute of Technology (BHU), Deli, India].

References

Abhilash, P. P., D. K. Nayak, B. Sangoju, R. Kumar, and V. Kumar. 2021. “Effect of nano-silica in concrete: A review.” Constr. Build. Mater. 278 (Apr): 122347. https://doi.org/10.1016/j.conbuildmat.2021.122347.
Afzali-Naniz, O., and M. Mazloom. 2019. “Fracture behavior of self-compacting semi-lightweight concrete containing nano-silica.” Adv. Struct. Eng. 22 (10): 2264–2277. https://doi.org/10.1177/1369433219837426.
Amran, M., G. Murali, N. H. Khalid, R. Fediuk, T. Ozbakkaloglu, Y. H. Lee, S. Haruna, and Y. Y. Lee. 2021. “Slag uses in making an ecofriendly and sustainable concrete: A review.” Constr. Build. Mater. 272: 121942. https://doi.org/10.1016/J.CONBUILDMAT.2020.1219.
Anstis, G. R., P. Chantikul, B. R. Lawn, and D. B. Marshall. 1981. “A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements.” J. Am. Ceram. Soc. 64 (9): 533–538. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x.
Atmaca, N., M. L. Abbas, and A. Atmaca. 2017. “Effects of nano-silica on the gas permeability, durability and mechanical properties of high-strength lightweight concrete.” Constr. Build. Mater. 147 (Aug): 17–26. https://doi.org/10.1016/j.conbuildmat.2017.04.156.
Cheng, Y., and Z. Shi. 2019. “Experimental study on nano-SiO2 improving concrete durability of bridge deck pavement in cold regions.” Adv. Civ. Eng. 2019 (2): 1–9. https://doi.org/10.1155/2019/5284913.
Chithra, S., S. R. R. Senthil Kumar, and K. Chinnaraju. 2016. “The effect of colloidal nano-silica on workability, mechanical and durability properties of high performance concrete with copper slag as partial fine aggregate.” Constr. Build. Mater. 113 (Jun): 794–804. https://doi.org/10.1016/j.conbuildmat.2016.03.119.
Constantinides, G., and F.-J. Ulm. 2007. “The nanogranular nature of C─ S─ H.” J. Mech. Phys. Solids 55 (1): 64–90. https://doi.org/10.1016/j.jmps.2006.06.003.
Du, H., S. Du, and X. Liu. 2014. “Durability performances of concrete with nano-silica.” Constr. Build. Mater. 73 (Dec): 705–712. https://doi.org/10.1016/j.conbuildmat.2014.10.014.
Durgun, H. N. A. 2018. “Strength, elastic and microstructural properties of SCCs’ with colloidal nano silica addition.” Constr. Build. Mater. 158 (Jan): 295–307. https://doi.org/10.1016/j.conbuildmat.2017.10.041.
Erdem, S., S. Hanbay, and Z. Güler. 2018. “Micromechanical damage analysis and engineering performance of concrete with colloidal nano-silica and demolished concrete aggregates.” Constr. Build. Mater. 171 (May): 634–642. https://doi.org/10.1016/j.conbuildmat.2018.03.197.
Fallah, S., and M. Nematzadeh. 2017. “Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume.” Constr. Build. Mater. 132 (Feb): 170–187. https://doi.org/10.1016/j.conbuildmat.2016.11.100.
Fediuk, R. S., Y. G. Yevdokimova, A. K. Smoliakov, N. Y. Stoyushko, and V. S. Lesovik. 2020. “Use of geonics scientific positions for designing of building composites for protective (fortification) structures.” IOP Conf. Ser.: Mater. Sci. Eng. 221 (1): 012011. https://doi.org/10.1088/1757-899X/221/1/012011.
Flores-Vivian, I., R. G. K. Pradoto, M. Moini, M. Kozhukhova, V. Potapov, and K. Sobolev. 2017. “The effect of SiO2 nanoparticles derived from hydrothermal solutions on the performance of portland cement based materials.” Front. Struct. Civ. Eng. 11 (4): 436–445. https://doi.org/10.1007/s11709-017-0438-2.
Gao, Z., P. Zhang, J. Guo, and K. Wang. 2021. “Bonding behavior of concrete matrix and alkali-activated mortar incorporating nano-SiO2 and polyvinyl alcohol fiber: Theoretical analysis and prediction model.” Ceram. Int. 47 (22): 31638–31649. https://doi.org/10.1016/j.ceramint.2021.08.044.
Gettu, R., Z. P. Bazant, and M. E. Karr. 1990. “Fracture properties and brittleness of high-strength concrete.” ACI Mater. J. 87 (6): 608–618.
Ghafari, E., H. Costa, E. Júlio, A. Portugal, and L. Durães. 2014. “The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete.” Mater. Des. 59 (Jul): 1–9. https://doi.org/10.1016/j.matdes.2014.02.051.
Givi, A. N., S. A. Rashid, F. N. A. Aziz, and M. A. M. Salleh. 2010. “Experimental investigation of the size effects of SiO2 nano-particles on the mechanical properties of binary blended concrete.” Composites, Part B 41 (8): 673–677. https://doi.org/10.1016/j.compositesb.2010.08.003.
Grzymski, F., M. Musiat, and T. Trapko. 2019. “Mechanical properties of fibre reinforced concrete with recycled fibres.” Constr. Build. Mater. 198 (Feb): 323–331. https://doi.org/10.1016/j.conbuildmat.2018.11.183.
Han, B., S. Ding, J. Wang, and J. Ou. 2019. Nano-engineered cementitious composites: Principles and practices, 731. New York: Springer.
Han, B., L. Zhang, S. Zeng, S. Dong, X. Yu, R. Rongwei Yang, and J. Ou. 2017. “Nano-core effect in nano-engineered cementitious composites.” Composites, Part A 95 (Apr): 100–109. https://doi.org/10.1016/j.compositesa.2017.01.008.
Hasan-Nattaj, F., and M. Nematzadeh. 2017. “The effect of forta-ferro and steel fibers on mechanical properties of high-strength concrete with and without silica fume and nano-silica.” Constr. Build. Mater. 137 (Apr): 557–572. https://doi.org/10.1016/j.conbuildmat.2017.01.078.
Hou, P., S. Kawashima, D. Kong, D. J. Corr, J. Qian, and S. P. Shah. 2013a. “Modification effects of colloidal nanoSiO2 on cement hydration and its gel property.” Composites, Part B 45 (1): 440–448. https://doi.org/10.1016/j.compositesb.2012.05.056.
Hou, P.-K., S. Kawashima, K.-J. Wang, D. J. Corr, J.-S. Qian, and S. P. Shah. 2013b. “Effects of colloidal nanosilica on rheological and mechanical properties of fly ash–cement mortar.” Cem. Concr. Compos. 35 (1): 12–22. https://doi.org/10.1016/j.cemconcomp.2012.08.027.
Jalal, M., A. Pouladkhan, O. F. Harandi, and D. Jafari. 2015. “Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete.” Constr. Build. Mater. 94 (Sep): 90–104. https://doi.org/10.1016/j.conbuildmat.2015.07.001.
John, E., T. Matschei, and D. Stephan. 2018. “Nucleation seeding with calcium silicate hydrate—A review.” Cem. Concr. Res. 113 (Nov): 74–85. https://doi.org/10.1016/j.cemconres.2018.07.003.
Konkol, J., and G. Prokopski. 2016. “Fracture toughness and fracture surfaces morphology of metakaolinite-modified concrete.” Constr. Build. Mater. 123 (Oct): 638–648. https://doi.org/10.1016/j.conbuildmat.2016.07.025.
Leone, M., G. Centonze, D. Colonna, F. Micelli, and M. A. Aiello. 2018. “Fiber-reinforced concrete with low content of recycled steel fiber: Shear behaviour.” Constr. Build. Mater. 161 (Feb): 141–155. https://doi.org/10.1016/j.conbuildmat.2017.11.101.
Li, Y., X. Guo, J. Yang, and M. Li. 2019. “Preparation of nano-SiO2/carbon fiber-reinforced concrete and its influence on the performance of oil well cement.” Int. J. Polym. Sci. 2019 (Sep): 1–9. https://doi.org/10.1155/2019/2783018.
Ling, Y., P. Zhang, J. Wang, P. Taylor, and S. Hu. 2020. “Effects of nanoparticles on engineering performance of cementitious composites reinforced with PVA fiber.” Nanotechnol. Rev. 9 (1): 504–514. https://doi.org/10.1515/ntrev-2020-0038.
Lofgren, I. 2005. Fibre-reinforced concrete for industrial construction—A fracture mechanics approach to material testing and structural analysis. Gothenburg, Sweden: Chalmers Univ. of Technology.
Marar, K., Ö. Eren, and T. Celik. 2001. “Relationship between impact energy and compression toughness energy of high-strength fiber-reinforced concrete.” Mater. Lett. 47 (4–5): 297–304. https://doi.org/10.1016/S0167-577X(00)00253-6.
Mondal, P., S. P. Shah, L. D. Marks, and J. J. Gaitero. 2010. “Comparative study of the effects of microsilica and nanosilica in concrete.” Transp. Res. Rec. 2141 (1): 6–9. https://doi.org/10.3141/2141-02.
Murali, G., S. R. Abid, K. Karthikeyan, M. K. Haridharan, M. Amran, and A. Siva. 2021. “Low-velocity impact response of novel prepacked expanded clay aggregate fibrous concrete produced with carbon nano tube, glass fiber mesh and steel fiber.” Constr. Build. Mater. 284 (May): 122749. https://doi.org/10.1016/j.conbuildmat.2021.122749.
Nazari, A., and S. Riahi. 2012. “Compressive strength and abrasion resistance of concrete containing SiO2 and Cr2O3 nanoparticles in different curing media.” Mag. Concr. Res. 64 (2): 177–188. https://doi.org/10.1680/macr.10.00173.
Potapov, V., Y. Efimenko, R. Fediuk, and D. Gorev. 2021a. “Effect of hydrothermal nanosilica on the performances of cement concrete.” Constr. Build. Mater. 269 (Feb): 121307. https://doi.org/10.1016/j.conbuildmat.2020.121307.
Potapov, V., Y. Efimenko, R. Fediuk, D. Gorev, A. Kozin, and Y. Liseitsev. 2021b. “Modification of cement composites with hydrothermal nano-SiO2.” J. Mater. Civ. Eng. 33 (12): 04021339. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003964.
Potapov, V., R. Fediuk, and D. Gorev. 2020a. “Hydrothermal SiO2 nanopowders: Obtaining them and their characteristics.” Nanomaterials (Basel) 10 (4): 624. https://doi.org/10.3390/nano10040624.
Potapov, V., R. Fediuk, and D. Gorev. 2020b. “Membrane concentration of hydrothermal SiO2 nanoparticles.” Sep. Purif. Technol. 251 (Nov): 117290. https://doi.org/10.1016/j.seppur.2020.117290.
Potapov, V., R. Fediuk, and D. Gorev. 2020c. “Obtaining sols, gels and mesoporous nanopowders of hydrothermal nanosilica.” J. Sol-Gel Sci. Technol. 94 (Jan): 681–694. https://doi.org/10.1007/s10971-020-05216-z.
Potapov, V. V., Y. V. Efimenko, and D. S. Gorev. 2019a. “Determination of the amount of Ca(OH)2 bound by additive nano-SiO2 in cement matrices.” Nanotechnol. Constr. A Sci. Internet-J. 11 (4): 415–432. https://doi.org/10.15828/2075-8545-2019-11-4-415-432.
Potapov, V. V., Y. V. Efimenko, and D. S. Gorev. 2019b. “Modification of concrete by hydrothermal nanosilica.” Nanotechnol. Constr. A Sci. Internet-J. 11 (3): 248–265. https://doi.org/10.15828/2075-8545-2019-11-3-248-265.
Potapov, V. V., and L. T. Zhuravlev. 2005. “Temperature dependence of the concentration of silanol groups in silica precipitated from a hydrothermal solution.” Glass Phys. Chem 31 (5): 661–670. https://doi.org/10.1007/s10720-005-0111-z.
Qomi, M. J., et al. 2014. “Combinatorial molecular optimization of cement hydrates.” Nat. Commun. 5 (1): 1–10. https://doi.org/10.1038/ncomms5960.
Ramachandran, V. S., R. F. Feldman, and J. J. Beaudoin. 1981. Concrete science: Treatise on current research. London: Heyden.
Russian Standards. 2012. Methods for strength determination using reference specimens. Moscow: Russian Standards.
Salemi, N., and K. Behfarnia. 2013. “Effect of nano-particles on durability of fiber-reinforced concrete pavement.” Constr. Build. Mater. 48 (Nov): 934–941. https://doi.org/10.1016/j.conbuildmat.2013.07.037.
Shamsai, A., S. Peroti, K. Rahmani, and L. Rahemi. 2012. “Effect of water-cement ratio on abrasive strength, porosity and permeability of nano-silica concrete.” World Appl. Sci. J. 17 (8): 929–933.
Sharma, U., D. Ali, and L. P. Singh. 2021. “Formation of C–S–H nuclei using silica nanoparticles during early age hydration of cementitious system.” Eur. J. Environ. Civ. Eng. 25 (8): 1491–1502. https://doi.org/10.1080/19648189.2019.1583135.
Sharma, U., L. P. Singh, D. Ali, and C. S. Poon. 2019a. “Effect of particle size of silica nanoparticles on hydration reactivity and microstructure of C─ S─ H gel.” Adv. Civ. Eng. Mater. 8 (3): 346–360. https://doi.org/10.1520/ACEM20190007.
Sharma, U., L. P. Singh, B. Zhan, and C. S. Poon. 2019b. “Effect of particle size of nanosilica on microstructure of C─ S─ H and its impact on mechanical strength.” Cem. Concr. Compos. 97 (Mar): 312–321. https://doi.org/10.1016/j.cemconcomp.2019.01.007.
Singh, L. P., S. K. Bhattacharyya, S. P. Shah, G. Mishra, and U. Sharma. 2016. “Studies on early stage hydration of tricalcium silicate incorporating silica nanoparticles: Part II.” Constr. Build. Mater. 102 (Jan): 943–949. https://doi.org/10.1016/j.conbuildmat.2015.05.084.
Singh, L. P., W. Zhu, T. Howind, and U. Sharma. 2017. “Quantification and characterization of C─ S─ H in silica nanoparticles incorporated cementitious system.” Cem. Concr. Compos. 79 (May): 106–116. https://doi.org/10.1016/j.cemconcomp.2017.02.004.
Ulm, F.-J. 2012. “Nano-engineering of concrete.” Arab. J. Sci. Eng. 37 (2): 481–488.
Wang, J., S. Dong, D. Wang, X. Yu, B. Han, and J. Ou. 2019. “Enhanced impact properties of concrete modified with nanofiller inclusions.” J. Mater. Civ. Eng. 31 (5): 04019030. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002659.
Wang, K., P. Zhang, J. Guo, and Z. Gao. 2021. “Single and synergistic enhancement on durability of geopolymer mortar by polyvinyl alcohol fiber and nano-SiO2.” J. Mater. Res. Technol. 15 (Nov): 1801–1814. https://doi.org/10.1016/j.jmrt.2021.09.036.
Wang, X. F., Y. J. Huang, G. Y. Wu, C. Fang, D. W. Li, N. X. Han, and F. Xing. 2018. “Effect of nano-SiO2 on strength, shrinkage and cracking sensitivity of lightweight aggregate concrete.” Constr. Build. Mater. 175 (Jun): 115–125. https://doi.org/10.1016/j.conbuildmat.2018.04.113.
Zhang, L., N. Ma, Y. Wang, B. Han, X. Cui, X. Yu, and J. Ou. 2016. “Study on the reinforcing mechanisms of nano silica to cement-based materials with theoretical calculation and experimental evidence.” J. Compos. Mater. 50 (29): 4135–4146. https://doi.org/10.1177/0021998316632602.
Zhang, M.-H., and J. Islam. 2012. “Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag.” Constr. Build. Mater. 29 (Apr): 573–580. https://doi.org/10.1016/j.conbuildmat.2011.11.013.
Zhang, P., X. B. Dai, J. X. Gao, and P. Wang. 2015. “Effect of nano-SiO2 particles on fracture properties of concrete composite containing fly ash.” Curr. Sci. 108 (11): 2035–2043.
Zhang, P., Z. Gao, J. Wang, and K. Wang. 2021. “Numerical modeling of rebar-matrix bond behaviors of nano-SiO2 and PVA fiber reinforced geopolymer composites.” Ceram. Int. 47 (8): 11727–11737. https://doi.org/10.1016/j.ceramint.2021.01.012.
Zhang, P., C. H. Guan, and Q. F. L. Liu. 2013. “Study on notch sensitivity of fracture properties of concrete containing nano-SiO2 particles and fly ash.” J. Nanomater. 2013 (Jan): 1–7. https://doi.org/10.1155/2013/381682.
Zhang, P., J. Wan, K. Wang, and Q. Li. 2017. “Influence of nano-SiO2 on properties of fresh and hardened high performance concrete: A state-of-the-art review.” Constr. Build. Mater. 148 (Sep): 648–658. https://doi.org/10.1016/j.conbuildmat.2017.05.059.
Zhang, P., Y. N. Zhao, Q. F. Li, P. Wang, and T. H. Zhang. 2014a. “Flexural toughness of steel fiber reinforced high performance concrete containing nano-SiO2 and fly ash.” Sci. World J. 2014. https://doi.org/10.1155/2014/403743.
Zhang, P., Y. N. Zhao, Q. F. Li, T. H. Zhang, and P. Wang. 2014b. “Mechanical properties of fly ash concrete composite reinforced with nano-SiO2 and steel fibre.” Curr. Sci. 106 (11): 1529–1537.
Zhdanok, S. A., V. V. Potapov, E. N. Polonina, and S. N. Leonovich. 2020. “Modification of cement concrete by admixtures containing nanosized materials.” J. Eng. Phys. Thermophys. 93 (3): 648–653. https://doi.org/10.1007/s10891-020-02163-y.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 7July 2022

History

Received: Aug 27, 2021
Accepted: Nov 1, 2021
Published online: Apr 23, 2022
Published in print: Jul 1, 2022
Discussion open until: Sep 23, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Vadim Potapov [email protected]
Chief Scientist, Research Geotechnological Center, Far Eastern Branch of Russian Academy of Sciences, 30, Severo-Vostochny Hwy., Petropavlovsk-Kamchatsky 683002, Russian Federation. Email: [email protected]
Yuriy Efimenko [email protected]
Deputy Head of a Center, Far Eastern Research Institute of Construction, Borodinskaya St., 14, Vladivostok 690033, Russian Federation. Email: [email protected]
Full Professor, Polytechnic Institute, Far Eastern Federal Univ., Vladivostok 690922, Russian Federation; Peter the Great St. Petersburg Polytechnic Univ., 29, Politekhnicheskaya St., Saint Petersburg 195251, Russia (corresponding author). ORCID: https://orcid.org/0000-0002-2279-1240. Email: [email protected]
Denis Gorev [email protected]
Leading Researcher, Research Geotechnological Center, Far Eastern Branch of Russian Academy of Sciences, 30, Severo-Vostochny Hwy., Petropavlovsk-Kamchatsky 683002, Russian Federation. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Measurement of High-Speed Deformations Using Fiber Bragg Gratings, 2022 International Conference on Electrical Engineering and Photonics (EExPolytech), 10.1109/EExPolytech56308.2022.9950795, (324-327), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share