Technical Papers
Mar 10, 2017

Using an Improved Jet-Erosion Test to Study the Influence of Soil Parameters on the Erosion of a Silty Soil

This article has a reply.
VIEW THE REPLY
This article has a reply.
VIEW THE REPLY
This article has a reply.
VIEW THE REPLY
Publication: Journal of Hydraulic Engineering
Volume 143, Issue 8

Abstract

A new jet-erosion test device has been developed to measure the erosion volume of soils under laboratory conditions. This device allows the determination of a complete erosion profile in addition to the depth of erosion below the jet. Jet-erosion tests using this new device were carried out on a silty soil to study the influence of the compaction dry density and water content on the erosion volume, critical shear stress (τc), linear erodibility coefficient (kD), and volumetric erodibility coefficient (kD*). The results of these tests showed the major roles played by the compaction dry density and suction, and the important effects of the soil fabric and permeability on the penetration of water into the soil sample. An inverse relationship was observed between the volumetric erodibility coefficient and critical shear stress, which allowed an estimate of kD* as a function of τc. The relationships between kD and τc, and between kD* and τc, are quasi-parallel lines with smaller values of kD*. Using the volumetric erodibility coefficient (kD*) rather than the usual linear erodibility coefficient (kD) may lead to better prediction of erosion in hydraulic works because this coefficient is more-directly related to the loss of soil that must be quantified in practice.

Get full access to this article

View all available purchase options and get full access to this article.

References

AFNOR (Association French Normalization Organization Regulation). (2005a). “Reconnaissance et essais géotechniques—Essais de laboratoire sur les sols. Partie 12: Détermination des limites d’Atterberg [Determination of Atterberg limits].”, Paris.
AFNOR (Association French Normalization Organization Regulation). (2005b). “Reconnaissance et essais géotechniques—Essais de laboratoire sur les sols. Partie 4: Détermination de la distribution granulométrique des particules [Determination of grain size distribution].”, Paris.
AFNOR (Association French Normalization Organization Regulation). (2014). “Sols: Reconnaissance et essais—Détermination des références de compactage d’un matériau—Essai Proctor Normal—Essai Proctor modifié [Standard and modified Proctor tests].”, Paris.
Al-Madhhachi, A. T., Fox, G. A., and Hanson, G. J. (2014). “Quantifying the erodibility of streambanks and hillslopes due to surface and subsurface forces.” Trans. ASABE, 57(4), 1057–1069.
Al-Madhhachi, A. T., Hanson, G. J., Fox, G. A., Tyagi, A. K., and Bulut, R. (2013). “Measuring soil erodibility using a laboratory ‘mini’ JET.” Trans. ASABE, 56(3), 901–910.
Ansati, S. A., Kothyari, U. C., and Ranga Raju, K. G. (2007). “Incipient motion characteristics of cohesive sediments.” ISH J. Hydraul. Eng., 13(2), 108–121.
Ariathurai, R., and Arulanandan, K. (1978). “Erosion rates of cohesive soils.” J. Hydraul. Div., 104, 279–283.
Beltaos, S., and Rajaratnam, N. (1977). “Impingement of axisymmetric developing jets.” J. Hydraul. Res., 15(4), 311–326.
Benahmed, N., and Bonelli, S. (2012). “Internal erosion of cohesive soils: Laboratory parametric study.” 6th Int. Conf. on Scour and Erosion, ICSE 6Paris, Societe hydrotechnique de France, 1041–1047.
Bendahmane, F. (2005). “Influence des interactions mécaniques eau-sol sur l’érosion interne.” Ph.D. thesis, Univ. of Nantes, Nantes, France.
Blaisdell, F. W., Anderson, C. L., and Hebaus, G. G. (1981). “Ultimate dimensions of local scour.” J. Hydraul. Div., 107(HY3), 327–337.
Bradford, J. M., and Blanchar, R. W. (1999). “Mineralogy and water quality parameters in rill erosion of clay-sand mixture.” Soil Sci. Soc. Am. J., 63(5), 1300–1307.
Briaud, J. L., Ting, F. C. K., Chen, H. C., Cao, Y., Han, S. W., and Kwak, K. W. (2001). “Erosion function apparatus for scour rate predictions.” J. Geotech. Geoenviron. Eng., 105–113.
Chapuis, R. P., and Gatien, T. (1986). “An improved rotating cylinder technique for quantitative measurement of the scour resistance of clays.” Can. Geotech. J., 23(1), 83–87.
Christensen, R. W., and Das, B. M. (1973). “Hydraulic erosion of remoulded cohesive soils, soils erosion: Causes and mechanisms, prevention and control.”, Highway Research Board, Washington, DC, 8–19.
Courivaud, J. R., Fry, J. J., Bonelli, S., Bendahmane, N., Regazzoni, P. L., and Marot, D. (2009). “Measuring the erodibility of soil materials constituting earth embankment: A key input for dams and levees safety assessment.” Proc., Hydro 2009, HAL archives-ouvertes, Lyon, France, 26–28.
Cui, Y. J. (1993). “Etude du comportement d’un limon compacté non saturé et de sa modélisation dans un cadre élasto-plastique [Behavior of an unsaturated compacted silt and elastoplastic modeling].” Ph.D. thesis, Ecole Nationale des Ponts et Chaussées, Paris.
Daly, E. R., Fox, G. A., Al-Madhhachi, A. T., and Miller, R. B. (2013). “A scour depth approach for deriving erodibility parameters from jet erosion tests.” Trans. ASABE, 56(6), 1343–1351.
Fell, R.,Hanson, G. J., Herrier, G., Marot, D., and Wahl, T. (2013). “Relationship between the erosion properties of soils and other parameters.” Erosion in geomechanics applied to dams and levees, S. Bonelli, ed., Wiley, Hoboken, NJ, 387.
Fell, R., Macgregor, P., Stapledon, D., and Bell, G. (2005). Geotechnical engineering of dams, A.A. Balkema, Rotterdam, Netherlands, 690.
Fleureau, J. M., Dao, L. Q., Oualmakrane, M., Souli, H., and Bannour, H. (2011). “Etude des mécanismes mis en jeu lors du jet erosion test [Mechanisms involved in JET].”, EDF Energy, London.
Fleureau, J. M., Kheirbek-Saoud, S., Soemitro, R., and Taibi, S. (1993). “Behavior of clayey soils on drying-wetting paths.” Can. Geotech. J., 30(2), 287–296.
Fleureau, J. M., Verbrugge, J. C., Huergo, P. J., Correira, A. G., and Kheirbek-Saoud, S. (2002). “Aspects of the behaviour of compacted clayey soils on drying and wetting paths.” Can. Geotech. J., 39(6), 1341–1357.
Ghaneeizad, S. M., Atkinson, J. F., and Bennett, S. J. (2015). “Effect of flow confinement on the hydrodynamics of circular impinging jets: Implications for erosion assessment.” Environ. Fluid Mech., 15(1), 1–25.
Gularte, R. C., Kelly, W. E., and Nacci, V. S. (1979a). “Rheological method for predicting erosion.” Marine Technology ’79: Ocean Energy, Proc., 15th Annual Conf., Marine Technology Society, New Orleans, 251–258.
Gularte, R. C., Kelly, W. E., and Nacci, V. S. (1979b). “Scouring of cohesive material as a rate process.” Civil Engineering in the Ocean IV. Proc., ASCE Specialty Conf., ASCE, Reston, VA, 848–862.
Hanson, G. J. (1990a). “Surface erodibility of earthen channels at high stresses. Part I—Open channel testing.” Trans. ASAE, 33(1), 127–131.
Hanson, G. J. (1990b). “Surface erodibility of earthen channels at high stresses. Part II—Developing an in-situ testing device.” Trans. ASAE, 33(1), 132–137.
Hanson, G. J., and Cook, K. R. (1997). “Development of excess shear stress parameters for circular jet testing.”, Agriculture Research Service, U.S. Dept. of Agriculture, Washington, DC.
Hanson, G. J., and Cook, K. R. (2004). “Apparatus, test procedures, and analytical methods to measure soil erodibility in situ.” Am. Soc. Agric. Eng., 20(4), 455–462.
Hanson, G. J., and Hunt, S. L. (2006). “Determining the erodibility of compacted soils for embankment dams.” Proc., 26th Annual USSD Conf. San Antonio, U.S. Society on Dams, Denver, 311–320.
Hanson, G. J., and Hunt, S. L. (2007). “Lessons learned using laboratory JET method to measure soil erodibility of compacted soils.” Applied engineering in agriculture, American Society of Agricultural and Biological Engineers, St. Joseph, MI, 305–312.
Hanson, G. J., and Robinson, K. M. (1993). “The influence of soil moisture and compaction on spillway erosion.” Trans. ASABE, 36(5), 1349–1352.
Hanson, G. J., Robinson, K. M., and Cook, K. R. (2002). “Scour below an overfall: Part II. Prediction.” Trans. ASAE, 45(4), 957–964.
Hanson, G. J., and Simon, A. (2001). “Erodibility of cohesive streambeds in the loess area of the midwestern USA.” Hydrol. Process., 15(1), 23–38.
Hanson, G. J., Tejral, R. D., Hunt, S. L., and Temple, D. M. (2010a). “Internal erosion and impact of erosion resistance.” Proc., 30th U.S. Society on Dams Annual Meeting and Conf., Agriculture Research Service, U.S. Dept. of Agriculture, Washington, DC, 773–784.
Hanson, G. J., Wahl, T., Temple, D. M., Hunt, S. L., and Tejral, R. D. (2010b). “Erodibility characteristics of embankment materials.” Proc., ASDSO 2010 Annual Conf., Agriculture Research Service, U.S. Dept. of Agriculture, Washington, DC, 8.
Hénensal, P., and Duchatel, F. (1990). “L’érodimètre à jets mobiles [Mobile jets erodimeter].” Bulletin de Liaison des Laboratoires des Ponts et Chaussées, 167(1), 47–52.
Julian, J. P., and Torres, R. (2006). “Hydraulic erosion of cohesive riverbanks.” Geomorphology, 76(1), 193–206.
Kamphuis, J. W. (1990). “Influence of sand or gravel on the erosion of cohesive sediment.” J. Hydraul. Res., 28(1), 43–53.
Kamphuis, J. W., and Hall, K. R. (1983). “Cohesive material erosion by undirectional current.” J. Hydraul. Eng., 49–61.
Lambe, T. W. (1958). “Compacted clay: Structure.” J. Soil Mech. Found. Div., 84(SM2), 1–34.
Lick, W., and McNeil, J. (2001). “Effects of sediment bulk properties on erosion rates.” Sci. Total Environ., 266(1–3), 41–48.
Lim, S. S. (2006). “Experimental investigation of erosion in variably saturated clay soils.”, School of Civil and Environmental Engineering, Univ. of New South Wales, Sydney, NSW, Australia.
Lim, S. S., and Khalili, N. (2009). “An improved rotating cylinder test design for laboratory measurement of erosion in clayed soils.” Geotech. Test. J., 32(3), 232–238.
Marot, D., Regazzoni, P. L., and Wahl, T. (2011). “Energy based method for providing soil surface erodibility ranking.” J. Geotech. Geoenviron. Eng., 1290–1293.
Mazurek, K. A., Rajaratnam, N., and Sego, D. C. (2001). “Scour of cohesive soil by submerged circular turbulent impinging jets.” J. Hydraul. Eng., 598–606.
Mercier, F., Golay, F., Bonelli, S., Anselmet, F., Borghi, R., and Philippe, P. (2014). “2D axisymmetrical numerical modeling of the erosion of a cohesive soil by a submerged turbulent impinging jet.” Eur. J. Mech. B. Fluids, 45(5–6), 36–50.
Mitchener, H., and Torfs, H. (1996). “Erosion of mud/sand mixtures.” Coastal Eng., 29(1), 1–25.
Moore, W. L., and Masch, F. D., Jr. (1962). “Experiments on the scour resistance of cohesive sediments.” J. Geophys. Res., 67(4), 1437–1446.
Mostafa, T. S., Imran, J., Chaudhry, H., and Kahn, I. B. (2008). “Erosion resistance of cohesive soils.” J. Hydraul. Res., 46(6), 777–787.
Pham, T. L. (2008). “Erosion et dispersion des sols argileux par un fluide [Erosion and dispersion of clayey soils by a fluid].” Ph.D. thesis, Ecole Nationale des Ponts et Chaussées, Paris, 214.
Poreh, M., Tsuei, Y. G., and Cermark, J. E. (1967). “Investigation of a turbulent radial wall jet.” J. Appl. Mech., 34(2), 457–463.
Rajaratnam, N., and Flint-Peterson, L. (1989). “Low Reynolds number circular turbulent jets.” Proc., Inst. Civ. Eng., 87(2), 299–305.
Regazzoni, P. L. (2009). “Confrontation et analyse d’érodimètres et caractérisation de la sensibilité à l’érosion d’interface [Comparison and analysis of erodimeters and characterization of sensitivity to interface erosion].” Ph.D. thesis, IUT de Saint Nazaire, France, 155.
Regazzoni, P. L., Hanson, G. J., Wahl, T., Marot, D., Courivaud, J. R., and Fry, J. J. (2010). “The influence of some engineering parameters on the erosion of soils.” Proc. 4th Int. Conf. on Scour and Erosion, ICSE-4, Japanese Geotechnical Society, Japan, 442–446.
Roberts, J., Jepsen, R., Gotthard, D., and Lick, W. (1998). “Effects of particle size and bulk density on erosion of quartz particles.” J. Hydraul. Eng., 1261–1267.
Robinson, K. M., and Hanson, G. J. (2001). “Headcut erosion research.” Proc., 7th Federal Interagency Sedimentation Conf., Reno, NV, 15–22.
Robinson, K. M., Hanson, G. J., and Cook, K. R. (2002). “Scour below an overfall: Part I. Investigation.” Trans. ASAE, 45(5), 949–956.
Sekine, M., and Nishimori, K. I. (2008). “Erosion rate of cohesive sediment by running water.” Proc. 4th Int. Conf. on Scour and Erosion, ICSE-4, Japanese Geotechnical Society, Japan, 424–429.
Shaikh, A., Ruff, J. F., Charlie, W. A., and Abt, S. R. (1988). “Erosion rate of compacted Na-Montmorillonite soils.” J. Geotech. Eng., 296–305.
Shresta, P. L., and Arulanandan, K. (1989). “Discussion on ‘Erosion rate of dispersive and nondispersive clays,’ by Shaikh, A., Ruff, J. F., Charlie, W. A., and Abt, S. R.” J. Geotech. Eng. Div., 1824–1826.
Simon, A., Pollen-Bankhead, N., and Thomas, R. E. (2011). “Development and application of a deterministic bank stability and toe erosion model for stream restoration.” Stream restoration in dynamic fluvial systems: Scientific approaches, analysis, and tools, geophysical monograph series, American Geophysical Union, Washington, DC, 453–474.
Taibi, S. (1994). “Comportement mécanique et hydraulique des sols soumis à une pression interstitielle négative—Etude expérimentale et modélisation [Mechanical and hydraulic behavior of soils subjected to suction: Experiments and modeling].” Ph.D. thesis, Ecole Centrale Paris, France, 396.
Taibi, S., et al. (2011). “Some aspects of the behaviour of compacted soils along wetting paths.” Géotechnique, 61(5), 431–437.
Wahl, T. L., Regazzoni, P. L., and Erdogan, Z. (2009). “Practical improvements for the hole erosion test.” Proc., 33rd IAHR Congress, International Association for Hydro-Environment Engineering and Research, China.
Wan, C. F., and Fell, R. (2002). “Investigation of internal erosion and piping of soils in embankment dams by the slot erosion test and the hole erosion test.”, Univ. of New South Wales, Sydney, Australia, 358.
Wan, C. F., and Fell, R. (2004). “Investigation of rate of erosion of soils in embankment dams.” J. Geotech. Geoenviron. Eng., 373–380.
Winterwerp, J. C., and Van Kesteren, W. G. M. (2004). Introduction to the physics of cohesive sediment in the marine environment, Elsevier, Amsterdam, Netherlands, 576.
Wynn, T., and Mostaghimi, S. (2006). “The effects of vegetation and soil type on stream bank erosion, southwestern Virginia, USA.” J. Am. Water Resour. Assoc., 42(1), 69–82.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 143Issue 8August 2017

History

Received: Sep 13, 2015
Accepted: Nov 29, 2016
Published ahead of print: Mar 10, 2017
Published online: Mar 11, 2017
Published in print: Aug 1, 2017
Discussion open until: Aug 11, 2017

Permissions

Request permissions for this article.

Authors

Affiliations

Division of Hydropower and Renewable Energy, Thuyloi Univ., Hanoi, Vietnam (corresponding author). ORCID: https://orcid.org/0000-0003-3578-9497. E-mail: [email protected]
Jean-Robert Courivaud
Chief Engineer, Hydraulic Engineering Center, EDF, Savoie Technolac, 73373 Le Bourget du Lac Cedex, France.
Patrick Pinettes, Ph.D.
GeophyConsult, 12 Allée du Lac de Garde, BP 231, 73074 Le Bourget du Lac cedex, France.
Hanène Souli
Associate Professor, Laboratory of Tribology and Dynamics of Systems, ENISE, 58 Rue Jean Parot, 42023 Saint Etienne Cedex, France.
Jean-Marie Fleureau
Professor, Laboratory of Soils, Structures and Materials Mechanics, Centrale Supélec, Grande Voie des Vignes, 92295 Châtenay Malabry, France.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share