Abstract

Following the 2012 Emilia-Romagna seismic sequence, widespread liquefaction of silty sands was observed, providing the opportunity to enhance our knowledge of the influence of fines content on seismic hazard and mitigation works. This paper presents the results of a thorough geotechnical investigation performed in connection with full-scale controlled blast tests in Bondeno, Italy, a small village that suffered liquefaction in 2012. Piezocone (CPTU) and seismic dilatometer (SDMT) tests were performed in natural and improved soils after rammed aggregate pier (RAP) treatment to a depth of 9.5 m to provide accurate soil characterization, evaluate liquefaction, and verify the effectiveness of the ground improvement. The combined use of piezocone (CPTU) and flat dilatometer (DMT) data provided reliable estimates of the overconsolidation ratio and at-rest earth pressure coefficient and highlighted the soil improvement in silty sands between 4 and 9 m in depth. Shear-wave velocity measurements showed a low sensitivity to RAP installation. The treatment effectiveness was also confirmed by the use of the simplified procedures for liquefaction assessment, underlining the important influence of the adopted fines profile and by the blast-induced liquefaction. CPTU and DMT parameters remained approximately unchanged between the piers after the detonation.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request. The data include in situ and laboratory test results.

Acknowledgments

The study was primarily funded by Geopier Foundation Company (Davidson, North Carolina). A special thanks also to Releo s.r.l. (Ferrara, Italy), who provided the installation of the rammed aggregate piers. The in situ testing campaign was carried out by CIRI Edilizia e Costruzioni, University of Bologna, Italy, under the research project TIRISICO (“Tecnologie Innovative per la riduzione del rischio sismico delle Costruzioni”, Project No. PG/2015/ 737636, POR-FESR 2014-2020). Financial contributions to this research activity were provided by INGV-FIRB Abruzzo project (“Indagini ad alta risoluzione per la stima della pericolosità e del rischio sismico nelle aree colpite dal terremoto del 6 aprile 2009”), by INGV-Abruzzo Region project (“Indagini di geologia, sismologia e geodesia per la mitigazione del rischio sismico”, L.R. n. 37/2016), and by Alma Mater Studiorum—Università di Bologna within AlmaIdea research project (2017, Scient. Resp. Laura Tonni). Special thanks to Brigham Young University for contributing to the realization of the blast test experiment in terms of personnel and technical equipment; to Professor Marco Stefani (University of Ferrara, Italy) for kindly sharing scientific information of the studied area; to Michele Perboni, who kindly guested the experimental activities; to the Bondeno Municipality and to the Emilia-Romagna Region (Luca Martelli), who provided all the necessary support to realize the research in collaboration with the other local authorities.

References

Adalier, K., and A. Elgamal. 2004. “Mitigation of liquefaction and associated ground deformations by stone columns.” Eng. Geol. 72 (3–4): 275–291. https://doi.org/10.1016/j.enggeo.2003.11.001.
Amorosi, A., L. Bruno, J. Facciorusso, A. Piccin, and I. Sammartino. 2016. “Stratigraphic control on earthquake-induced liquefaction: A case study from the Central Po Plain (Italy).” Sediment. Geol. 345 (Nov): 42–53. https://doi.org/10.1016/j.sedgeo.2016.09.002.
Amoroso, S., et al. 2017. “The first Italian blast-induced liquefaction test (Mirabello, Emilia-Romagna, Italy): Description of the experiment and preliminary results.” Ann. Geophys. 60 (5): S0556. https://doi.org/10.4401/ag-7415.
Amoroso, S., et al. 2020. “Blast-induced liquefaction in silty sands for full-scale testing of ground improvement methods: Insights from a multidisciplinary study.” Eng. Geol. 265 (Feb): 105437. https://doi.org/10.1016/j.enggeo.2019.105437.
Amoroso, S., K. M. Rollins, P. Monaco, M. Holtrigter, and A. Thorp. 2018. “Monitoring ground improvement using the seismic dilatometer in Christchurch, New Zealand.” Geotech. Test. J. 41 (5): 946–966. https://doi.org/10.1520/GTJ20170376.
Andrus, R. D., and K. H. Stokoe II. 2000. “Liquefaction resistance of soils from shear-wave velocity.” J. Geotech. Geoenviron. Eng. 126 (11): 1015–1025. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1015).
Ashford, S., K. M. Rollins, and J. Lane. 2004. “Blast-induced liquefaction for full-scale foundation testing.” J. Geotech. Geoenviron. Eng. 130 (8): 798–806. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(798).
ASTM. 2009. Standard practice for description and identification of soils (visual-manual procedure). ASTM D2488-09. West Conshohocken, PA: ASTM.
ASTM. 2011. Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM D2487-11. West Conshohocken, PA: ASTM.
Baez, J. I. 1995. “A design model for the reduction of soil liquefaction by vibrostone columns.” Ph.D. dissertation, Faculty of the Graduate School, Univ. of Southern California.
Balachowski, L., and N. Kurek. 2015. “Vibroflotation control of sandy soils.” In Proc., 3rd Int. Conf. on the Flat Dilatometer, edited by S. Marchetti, P. Monaco, and A. Viana da Fonseca, 185–190. Rome: DMT’15 Conference Organizing Committee.
Baldi, G., R. Bellotti, V. Ghionna, M. Jamiolkowski, S. Marchetti, and E. Pasqualini. 1986. “Flat dilatometer tests in calibration chambers.” In Vol. 6 of Proc., Specialty Conf. on Use of In Situ Tests in Geotechnical Engineering GSP, 431–446. New York: ASCE.
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Géotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99.
Boulanger, R. W., and I. M. Idriss. 2014. CPT and SPT based liquefaction triggering procedures.. Davis, CA: Center for Geotechnical Modeling, Dept. of Civil and Environmental, College of Engineering, Univ. of California at Davis.
Caputo, R., M. E. Poli, L. Minarelli, D. Rapti-Caputo, S. Sboras, M. Stefani, and A. Zanferrari. 2016. “Palaeoseismological evidence for the 1570 Ferrara earthquake, Italy.” Tectonics 35 (6): 1423–1445. https://doi.org/10.1002/2016TC004238.
Castro, G. 1969. “Liquefaction of sands.” Ph.D. dissertation, Div. of Engineering and Applied Physics, Harvard Univ.
Civico, R., C. A. Brunori, P. M. De Martini, S. Pucci, F. R. Cinti, and D. Pantosti. 2015. “Liquefaction susceptibility assessment in fluvial plains using airborne LIDAR: The case of the 2012 Emilia earthquake sequence area (Italy).” Nat. Hazards Earth Syst. Sci. 15 (11): 2473–2483. https://doi.org/10.5194/nhess-15-2473-2015.
D’Appolonia, E. 1954. “Loose sands—Their compaction by vibroflotation.” In Proc., Symp. on Dynamic Testing of Soils, 138–162. West Conshohocken, PA: ASTM.
EMERGEO Working Group. 2013. “Liquefaction phenomena associated with the Emilia earthquake sequence of May-June 2012 (northern Italy).” Nat. Hazards Earth Syst. Sci. 13 (4): 935–947. https://doi.org/10.5194/nhess-13-935-2013.
Facciorusso, J., C. Madiai, and G. Vannucchi. 2015. “CPT-based liquefaction case history from the 2012 Emilia earthquake in Italy.” J. Geotech. Geoenviron. Eng. 141 (12): 1032–1051. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001349.
Facciorusso, J., C. Madiai, and G. Vannucchi. 2016. “The 2012 Emilia earthquake (Italy): Geotechnical characterization and ground response analyses of the paleo-Reno river levees.” Soil Dyn. Earthquake Eng. 86 (Jul): 71–88. https://doi.org/10.1016/j.soildyn.2016.04.017.
Finno, R. J., A. P. Gallant, and P. J. Sabatini. 2016. “Evaluating ground improvement after blast densification at the Oakridge landfill.” J. Geotech. Geoenviron. Eng. 142 (1): 04015054. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001365.
Fontana, D., S. Amoroso, L. Minarelli, and M. Stefani. 2019. “Sand liquefaction phenomena induced by a blast test: New insights from composition and texture of sands (late Quaternary, Emilia, Italy).” J. Sediment. Res. 89 (1): 13–27. https://doi.org/10.2110/jsr.2019.1.
Gajo, A., and D. Muir Wood. 1999. “Severn-trent sand: A kinematic-hardening constitutive model: The q-p formulation.” Géotechnique 49 (5): 595–614. https://doi.org/10.1680/geot.1999.49.5.595.
Green, R. A., S. Olsen, and C. Polito. 2006. “A comparative study of the influence of fines on the liquefaction susceptibility of sands: Field versus laboratory.” In Vol. 14 of Proc., 8th US National Conf. on Earthquake Engineering, 8229–8238. Oakland, CA: Earthquake Engineering Research Institute.
Harada, K., R. P. Orense, K. Ishihara, and J. Mukai. 2010. “Lateral stress effects on liquefaction resistance correlations.” Bull. N. Z. Soc. Earthquake Eng. 43 (1): 13–23. https://doi.org/10.5459/bnzsee.43.1.13-23.
Hossain, M. A., and R. D. Andrus. 2016. “At-rest lateral stress coefficient in sands from common field methods.” J. Geotech. Geoenviron. Eng. 142 (12): 06016016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001560.
Idriss, I. M., and R. W. Boulanger. 2004. “Semi-empirical procedures for evaluating liquefaction potential during earthquakes.” In Proc., 11th Int. Conf. on Soil Dynamics and Earthquake Engineering and 33rd Int. Conf. on Earthquake Geotechnical Engineering, 32–56. Singapore: Stallion Press.
Idriss, I. M., and R. W. Boulanger. 2008. Soil liquefaction during earthquakes. Oakland, CA: Earthquake Engineering Research Institute.
Italian Building Code. 2018. Norme tecniche per le costruzioni [Technical building regulations]. Rome: Italian Ministry of Infrastructures and Mobility.
Iwasaki, T., K. Tokida, F. Tatsuoka, S. Yasuda, and H. Sato. 1982. “Microzonation for soil liquefaction potential using simplified methods.” In Vol. 3 of Proc., 3rd Int. Conf. on Microzonation, 1319–1330. Basel, Switzerland: Multidisciplinary Digital Publishing Institute.
Jamiolkowski, M., D. C. F. Lo Presti, and M. Manassero. 2001. “Evaluation of relative density and shear strength of sands from cone penetration test and flat dilatometer test.” In Proc., Symp. on Soil Behaviour and Soft Ground Construction GSP 119, 201–238. Reston, VA: ASCE.
Jefferies, M., and K. Been. 2006. Soil liquefaction. A critical state approach. Hoboken, NJ: Taylor and Francis.
Jendeby, L. 1992. “Deep compaction by vibrowing.” In Vol. 1 of Proc., Nordic Geotechnical Meeting, 19–24. Lyngby, Denmark: Danish Geotechnical Society.
Kayen, R., R. E. S. Moss, E. M. Thompson, R. B. Seed, K. O. Cetin, A. Der Kiureghian, Y. Tanaka, and K. Tokimatsu. 2013. “Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential.” J. Geotech. Geoenviron. Eng. 139 (3): 407–419. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000743.
Kokusho, T., F. Ito, Y. Nagao, and R. A. Green. 2012. “Influence of non/low-plastic fines and associated aging effects on liquefaction resistance.” J. Geotech. Geoenviron. Eng. 138 (6): 747–756. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000632.
Kulhawy, F. H., and P. W. Mayne. 1990. Manual on estimating soil properties for foundation design. Palo Alto, CA: Electric Power Research Institute.
Lunne, T., and H. P. Christophersen. 1983. “Interpretation of cone penetrometer data for offshore sands.” In Proc., 15th Annual Offshore Technology Conf., 181–188. Houston: Offshore Technology Conference.
Marchetti, D., P. Monaco, S. Amoroso, and L. Minarelli. 2019. “In situ tests by Medusa DMT.” In Proc., 17th European Conf. on Soil Mechanics and Geotechnical Engineering, edited by H. Sigursteinsson, S. Erlingsson, and B. Bessason. London: International Society for Soil Mechanics and Geotechnical Engineering.
Marchetti, S. 1980. “In situ tests by flat dilatometer.” J. Geotech. Eng. Div. 106 (3): 299–321. https://doi.org/10.1061/AJGEB6.0000934.
Marchetti, S. 1997. “The flat dilatometer: Design applications.” In Proc., 3rd Int. Geotech. Eng. Conf., 421–448. Giza, Egypt: Cairo Univ.
Marchetti, S. 2016. “Incorporating the stress history parameter KD of DMT into the liquefaction correlations in clean uncemented sands.” J. Geotech. Geoenviron. Eng. 142 (2): 04015072. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001380.
Marchetti, S., and P. Monaco. 2018. “Recent improvements in the use, interpretation, and applications of DMT and SDMT in Practice.” Geotech. Test. J. 41 (5): 837–850. https://doi.org/10.1520/GTJ20170386.
Marchetti, S., P. Monaco, G. Totani, and M. Calabrese. 2001. “The flat dilatometer test (DMT) in soil investigations—A report by the ISSMGE committee TC16.” In Proc., 2nd Int. Conf. on the Flat Dilatometer, edited by P. P. Rahardjo and T. Lunne, 7–48. Bandung, Indonesia: Parahyangan Catholic Univ.
Marchetti, S., P. Monaco, G. Totani, and D. Marchetti. 2008. “In situ tests by seismic dilatometer (SDMT).” In Proc., Symp. Honoring Dr. John H. Schmertmann for His Contributions to Civil Engineering at Research to Practice GSP 180, edited by J. E. Laier, D. K. Crapps, and M. H. Hussein, 292–311. Reston, VA: ASCE.
Massarsch, K. R., and B. H. Fellenius. 2019. “Evaluation of vibratory compaction by in-situ tests.” J. Geotech. Geoenviron. Eng. 145 (12): 05019012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002166.
Massarsch, K. R., C. Wersäll, and B. H. Fellenius. 2019. “Horizontal stress increase induced by deep vibratory compaction.” Proc. Inst. Civ. Eng. Geotech. Eng. 173 (3): 228–253. https://doi.org/10.1680/jgeen.19.00040.
Maurer, B. W., R. A. Green, M. Cubrinovski, and B. A. Bradley. 2015a. “Fines-content effects on liquefaction hazard evaluation for infrastructure during the 2010-2011 Canterbury, New Zealand earthquake sequence.” Soil Dyn. Earthquake Eng. 76 (Sep): 58–68. https://doi.org/10.1016/j.soildyn.2014.10.028.
Maurer, B. W., R. A. Green, and O. D. S. Taylor. 2015b. “Moving towards an improved index for assessing liquefaction hazard: Lessons from historical data.” Soils Found. 55 (4): 778–787. https://doi.org/10.1016/j.sandf.2015.06.010.
Mayne, P. W., M. R. Coop, S. M. Springman, A. B. Huang, and J. G. Zornberg. 2009. “Geomaterial behavior and testing.” In Vol. 4 of Proc., 17th Int. Conf. on Soil Mechanics and Geotechnical Engineering, edited by M. Hamza, 2777–2872. Amsterdam, Netherlands: IOS Press.
Mitchell, J. K. 1981. “Soil improvement: State-of-the-art.” In Vol. 4 of Proc., 10th Int. Conf. on Soil Mechanics and Foundation Engineering, 509–565. Rotterdam, Netherlands: A.A. Balkema.
Monaco, P., S. Amoroso, S. Marchetti, D. Marchetti, G. Totani, S. Cola, and P. Simonini. 2014. “Overconsolidation and stiffness of Venice lagoon sands and silts from SDMT and CPTU.” J. Geotech. Geoenviron. Eng. 140 (1): 215–227. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000965.
Monaco, P., S. Marchetti, G. Totani, and M. Calabrese. 2005. “Sand liquefiability assessment by flat dilatometer test (DMT).” In Vol. 4 of Proc., 16th Int. Conf. on Soil Mechanics and Geotechnical Engineering, 2693–2697. Rotterdam, Netherlands: Millpress.
Passeri, F., C. Comina, V. Marangoni, S. Foti, and S. Amoroso. 2018. “Geophysical tests to monitor blast-induced liquefaction, the Mirabello (NE, Italy) test site.” J. Environ. Eng. Geophys. 23 (3): 319–333. https://doi.org/10.2113/JEEG23.3.319.
Pesci, A., G. Teza, F. Loddo, K. M. Rollins, P. Andersen, L. Minarelli, and S. Amoroso. 2022. “Remote sensing of induced liquefaction: TLS and SfM for a full-scale blast test.” J. Surv. Eng. 148 (1): 04021026. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000379.
Pizzi, A., and V. Scisciani. 2012. “The May 2012 Emilia (Italy) earthquakes: Preliminary interpretations on the seismogenic source and the origin of the coseismic ground effects.” Ann. Geophys. 55 (4): 751–757.
Polito, C. P., and J. R. Martin II. 2001. “Effects of non-plastic fines on the liquefaction resistance of sands.” J. Geotech. Geoenviron. Eng. 127 (5): 408–415. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408).
Porcino, D., and V. Diano. 2016. “Laboratory study on pore pressure generation and liquefaction of low plasticity silty sandy soils during the 2012 earthquake in Italy.” J. Geotech. Geoenviron. Eng. 142 (10): 04016048. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001518.
Prakash, S., and V. K. Puri. 2010. “Recent advances in liquefaction of fine grained soils.” In Proc., 5th Int. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. Rolla, MO: Missouri Univ. of Science and Technology.
Priebe, H. J. 1998. “Vibro replacement to prevent earthquake induced liquefaction.” Ground Eng. 31 (9): 30–33.
Robertson, P. K. 2009. “Interpretation of cone penetration tests—A unified approach.” Can. Geotech. J. 46 (11): 1337–1355. https://doi.org/10.1139/T09-065.
Robertson, P. K. 2010. “Estimating in-situ state parameter and friction angle in sandy soils from the CPT.” In Proc., 2nd Int. Symp. on Cone Penetration Testing, 1–8. Madison, WI: Omnipress.
Robertson, P. K. 2013. “The James K. Mitchell lecture: Interpretation of in-situ tests—Some insights.” In Vol. 1 of Proc., 4th Int. Conf. Geotechnical & Geophysical Site Characterization, 3–24. London: CRC Press.
Robertson, P. K., and C. E. Wride. 1998. “Evaluating cyclic liquefaction potential using the cone penetration test.” Can. Geotech. J. 35 (3): 442–459. https://doi.org/10.1139/t98-017.
Rollins, K. M., S. Amoroso, P. Andersen, L. Tonni, and K. J. Wissmann. 2021. “Liquefaction mitigation of silty sands using rammed aggregate piers based on blast-induced liquefaction testing.” J. Geotech. Geoenviron. Eng. 147 (9): 04021085. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002563.
Saftner, D. A., J. Zheng, R. A. Green, R. Hryciw, and K. J. Wissmann. 2018. “Rammed aggregate pier installation effect on soil properties.” Proc. Inst. Civ. Eng. Ground Improv. 171 (2): 63–73. https://doi.org/10.1680/jgrim.16.00021.
Salgado, R., R. W. Boulanger, and J. K. Mitchell. 1997. “Lateral stress effect on CPT liquefaction resistance correlations.” J. Geotech. Geoenviron. Eng. 123 (8): 726–735. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:8(726).
Santucci de Magistris, F., G. Lanzano, G. Forte, and G. Fabbrocino. 2014. “A peak acceleration threshold for soil liquefaction: Lessons learned from the 2012 Emilia earthquake (Italy).” Nat. Hazard. 74 (2): 1069–1094. https://doi.org/10.1007/s11069-014-1229-x.
Saye, S. R., S. M. Olson, and K. W. Franke. 2021. “Common-origin approach to assess level-ground liquefaction susceptibility and triggering in CPT-compatible soils using ΔQ.” J. Geotech. Geoenviron. Eng. 147 (7): 04021046. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002515.
Schmertmann, J. H. 1985. “Measure and use of the in situ lateral stress.” In The practice of foundation engineering, a volume honoring Jorj O. Osterberg, 189–213. Evanston, IL: Northwestern Univ.
Schmertmann, J. H., W. Baker, R. Gupta, and K. Kessler. 1986. “CPT/DMT qC of ground modification at a power plant.” In Proc., Specialty Conf. on Use of In Situ Tests in Geotechnical Engineering GSP 6, 985–1001. New York: ASCE.
Seed, H. B., and I. M. Idriss. 1971. “Simplified procedure for evaluating soil liquefaction potential.” J. Geotech. Eng. Div. 97 (9): 1249–1273. https://doi.org/10.1061/JSFEAQ.0001662.
Senneset, K., R. Sandven, T. Lunne, and T. Amundsen. 1988. “Piezocone tests in silty soils.” In Vol. 2 of Proc., Int. Symp. on Penetration Testing, 955–966. Rotterdam, Netherlands: Balkema.
Skempton, A. W. 1986. “Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, aging and overconsolidation.” Geotechnique 36 (3): 425–447. https://doi.org/10.1680/geot.1986.36.3.425.
Smith, M. E., and K. J. Wissmann. 2018. “Ground improvement reinforcement mechanisms determined for the Mw 7.8 Muisne, Ecuador, earthquake.” In Proc., 5th Geotechnical Earthquake Engineering and Soil Dynamics Conf.: Liquefaction Triggering, Consequences, and Mitigation, 286–294. Reston, VA: ASCE.
Solymar, Z. V. 1984. “Compaction of alluvial sands by deep blasting.” Can. Geotech. J. 21 (2): 305–321. https://doi.org/10.1139/t84-032.
Stefani, S., L. Minarelli, A. Fontana, and I. Hajdas. 2018. “Regional deformation of late Quaternary fluvial sediments in the Apennines foreland basin (Emilia, Italy).” Int. J. Earth Sci. 107 (7): 2433–2447. https://doi.org/10.1007/s00531-018-1606-x.
Suzuki, Y., T. Sanematsu, and K. Tokimatsu. 1998. “Correlation between SPT and seismic CPT.” In Vol. 2 of Proc., 1st Int. Conf. on Site Characterization, 1375–1380. Rotterdam, Netherlands: Balkema.
Toscani, G., P. Burrato, D. Di Bucci, S. Seno, and G. Valensise. 2009. “Plio-quaternary tectonic evolution of the northern Apennines thrust fronts (Bologna-Ferrara section, Italy): Seismotectonic implications.” Ital. J. Geosci. 128 (2): 605–613.
Tsai, P., D. Lee, G. T. Kung, and C. H. Juang. 2009. “Simplified DMT-based methods for evaluating liquefaction resistance of soils.” Eng. Geol. 103 (1–2): 13–22. https://doi.org/10.1016/j.enggeo.2008.07.008.
van Ballegooy, S., P. Malan, V. Lacrosse, M. E. Jacka, M. Cubrinovski, J. D. Bray, T. D. O’Rourke, S. A. Crawford, and H. Cowan. 2014. “Assessment of liquefaction-induced land damage for residential Christchurch.” Earthquake Spectra 30 (1): 31–55. https://doi.org/10.1193/031813EQS070M.
Vautherin, E., C. Lambert, D. Barry-Macaulay, and M. Smith. 2017. “Performance of rammed aggregate piers as a soil densification method in sandy and silty soils: Experience from the Christchurch rebuild.” In Proc., 3rd Int. Conf. on Performance-based Design in Earthquake Geotechnical Engineering. London: International Society for Soil Mechanics and Geotechnical Engineering.
Wissmann, K. J., S. van Ballegooy, B. C. Metcalfe, J. N. Dismuke, and C. K. Anderson. 2015. “Rammed aggregate pier ground improvement as a liquefaction mitigation method in sandy and silty soils.” In Proc., 6th Int. Conf. on Earthquake Geotechnical Engineering. London: International Society for Soil Mechanics and Geotechnical Engineering.
Youd, T. L., et al. 2001. “Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils.” J. Geotech. Geoenviron. Eng. 127 (10): 817–833. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817).
Youd, T. L., and I. M. Idriss. 2001. “Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils.” J. Geotech. Geoenviron. Eng. 127 (4): 297–313. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(297).
Yu, H. S. 2004. “James K. Mitchell lecture—In situ soil testing: From mechanics to interpretation.” In Vol. 1 of Proc., 2nd Int. Conf. on Site Characterization, 3–38. London: Taylor & Francis.
Zhang, G., P. K. Robertson, and R. W. I. Brachman. 2002. “Estimating liquefaction induced ground settlements from CPT for level ground.” Can. Geotech. J. 39 (5): 1168–1180. https://doi.org/10.1139/t02-047.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 148Issue 6June 2022

History

Received: Nov 2, 2020
Accepted: Jan 25, 2022
Published online: Mar 29, 2022
Published in print: Jun 1, 2022
Discussion open until: Aug 29, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, Dept. of Engineering and Geology, Univ. of Chieti-Pescara, Viale Pindaro, 42, Pescara 65129, Italy; Research Associate, Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Viale Crispi 43, 67100 L’Aquila, Italy (corresponding author). ORCID: https://orcid.org/0000-0001-5835-079X. Email: [email protected]
Maria F. García Martínez
Research Fellow, Dept. of Civil, Chemical, Environmental, and Materials Engineering, Univ. of Bologna, Viale del Risorgsimento, 2, Bologna 40136, Italy.
Associate Professor, Dept. of Civil, Architectural and Environmental Engineering, Univ. of L’Aquila, Piazzale Ernesto Pontieri 1—Monteluco di Roio, L’Aquila 67100, Italy. ORCID: https://orcid.org/0000-0002-1473-158X
Associate Professor, Dept. of Civil, Chemical, Environmental, and Materials Engineering, Univ. of Bologna, Viale del Risorgimento, 2, Bologna 40136, Italy. ORCID: https://orcid.org/0000-0002-9391-6661
Guido Gottardi
Full Professor, Dept. of Civil, Chemical, Environmental, and Materials Engineering, Univ. of Bologna, Viale del Risorgimento, 2, Bologna 40136, Italy.
Full Professor, Dept. of Civil and Environmental Engineering, Brigham Young Univ., 368 CB, Provo, UT 84602. ORCID: https://orcid.org/0000-0002-8977-6619
Luca Minarelli
Research Fellow, Istituto Nazionale di Geofisica and Vulcanologia, Sezione Roma1, Viale Crispi 43, 67100 L’Aquila, Italy.
Diego Marchetti
President and Chief Engineer, Studio Prof. Marchetti, Via Bracciano, 38, Rome 00189, Italy.
Kord J. Wissmann, M.ASCE
President and Chief Engineer, Geopier Foundation Company, 130 Harbour Place Dr., Suite 280, Davidson, NC 28036.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Improved Liquefaction Resistance with Rammed Aggregate Piers Resulting from Increased Earth Pressure Coefficient and Density, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-11727, 150, 6, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share