Abstract

This paper explores how energy piles interact under imbalanced and balanced daily temperature cycles and a range of monotonic thermal loads, combining field experiments and numerical simulations on two bored energy piles with a spacing of 3.5 m. Monotonic heating and cooling loads were simulated for temperature changes of |ΔT| = 5°C, 10°C, 15°C, and 20°C. Balanced, cooling-oriented imbalanced, and heating-oriented imbalanced thermal cycles were simulated between 0°C and 40°C with heating-to-cooling time ratios of 12:12, 16:8, and 8:16, respectively. One of the two energy piles’ axial and radial thermomechanical responses was investigated during single- and dual-pile operations. Soil temperature changes between the piles were greater for dual-pile operation, leading to increased thermal interaction, particularly for higher magnitudes of monotonic thermal loads. However, dual-pile operation did not alter the ground temperatures near the edge of the piles for the pile spacing considered. They remained similar for single- and dual-pile operations for the setting investigated in this paper. As a result, the pile temperatures, axial and radial thermal stresses, and thermal stress rates were similar for all single- and dual-pile operations simulations. Cyclic temperatures, particularly balanced cyclic loads, induced lower thermal effects in the piles and soil than in other cases. Overall, the results from this study provide validated insights into the situations where thermal interaction and different temperatures typical of heat pumps should be considered in designing groups of energy piles.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors acknowledge the Australian Government Research Training Program Scholarship provided to the first author.

References

Adinolfi, M., R. M. S. Maiorano, A. Mauro, N. Massarotti, and S. Aversa. 2018. “On the influence of thermal cycles on the yearly performance of an energy pile.” Geomech. Energy Environ. 16: 32–44. https://doi.org/10.1016/j.gete.2018.03.004.
Ali, M. A., A. Bouazza, R. M. Singh, W. P. Gates, and R. K. Rowe. 2016. “Thermal conductivity of geosynthetic clay liners.” Can. Geotech. J. 53 (9): 1510–1521. https://doi.org/10.1139/cgj-2015-0585.
Amatya, B. L., K. Soga, P. J. Bourne-Webb, T. Amis, and L. Laloui. 2012. “Thermo-mechanical behaviour of energy piles.” Géotechnique 62 (6): 503–519. https://doi.org/10.1680/geot.10.P.116.
Ayaz, H., M. Faizal, and A. Bouazza. 2022. “Thermo-energy performance of neighbouring energy piles.” Soils Rocks 45 (1): e2022076521. https://doi.org/10.28927/SR.2022.076521.
Barry-Macaulay, D., A. Bouazza, R. M. Singh, B. Wang, and P. G. Ranjith. 2013. “Thermal conductivity of soils and rocks from the Melbourne (Australia) region.” Eng. Geol. 164: 131–138. https://doi.org/10.1016/j.enggeo.2013.06.014.
Barry-Macaulay, D., A. Bouazza, B. Wang, and R. M. Singh. 2015. “Evaluation of soil thermal conductivity models.” Can. Geotech. J. 52 (11): 1892–1900. https://doi.org/10.1139/cgj-2014-0518.
Batini, N., A. F. R. Loria, P. Conti, D. Testi, W. Grassi, and L. Laloui. 2015. “Energy and geotechnical behaviour of energy piles for different design solutions.” Appl. Therm. Eng. 86: 199–213. https://doi.org/10.1016/j.applthermaleng.2015.04.050.
Bourne-Webb, P. J., B. Amatya, K. Soga, T. Amis, C. Davidson, and P. Payne. 2009. “Energy pile test at Lambeth College, London: Geotechnical and thermodynamic aspects of pile response to heat cycles.” Géotechnique 59 (3): 237–248. https://doi.org/10.1680/geot.2009.59.3.237.
Caulk, R., E. Ghazanfari, and J. S. McCartney. 2016. “Parameterization of a calibrated geothermal energy pile model.” Geomech. Energy Environ. 5: 1–15. https://doi.org/10.1016/j.gete.2015.11.001.
Chen, Y., J. Xu, H. Li, L. Chen, C. W. W. Ng, and H. Liu. 2017. “Performance of a prestressed concrete pipe energy pile during heating and cooling.” J. Perform. Constr. Facil 31 (3): 06017001. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000982.
Di Donna, A., and L. Laloui. 2015. “Numerical analysis of the geotechnical behaviour of energy piles.” Int. J. Numer. Anal. Methods Geomech. 39 (8): 861–888. https://doi.org/10.1002/nag.2341.
Di Donna, A., A. F. Rotta Loria, and L. Laloui. 2016. “Numerical study of the response of a group of energy piles under different combinations of thermo-mechanical loads.” Comput. Geotech. 72: 126–142. https://doi.org/10.1016/j.compgeo.2015.11.010.
Elzeiny, R., M. T. Suleiman, S. Xiao, M. A. Abu Qamar, and M. Al-Khawaja. 2020. “Laboratory-scale pull-out tests on a geothermal energy pile in dry sand subjected to heating cycles.” Can. Geotech. J. 57 (11): 1754–1766. https://doi.org/10.1139/cgj-2019-0143.
Faizal, M., A. Bouazza, C. Haberfield, and J. S. McCartney. 2018. “Axial and radial thermal responses of a field-scale energy pile under monotonic and cyclic temperature changes.” J. Geotech. Geoenviron. Eng. 144 (10): 04018072. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001952.
Faizal, M., A. Bouazza, J. S. McCartney, and C. Haberfield. 2019a. “Axial and radial thermal responses of energy pile under six storey residential building.” Can. Geotech. J. 56 (7): 1019–1033. https://doi.org/10.1139/cgj-2018-0246.
Faizal, M., A. Bouazza, J. S. McCartney, and C. Haberfield. 2019b. “Effects of cyclic temperature variations on thermal response of an energy pile under a residential building.” J. Geotech. Geoenviron. Eng. 145 (10): 04019066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002147.
Faizal, M., A. Bouazza, and R. M. Singh. 2016. “An experimental investigation of the influence of intermittent and continuous operating modes on the thermal behaviour of a full scale geothermal energy pile.” Geomech. Energy Environ. 8: 8–29. https://doi.org/10.1016/j.gete.2016.08.001.
Faizal, M., A. Moradshahi, A. Bouazza, and J. S. McCartney. 2022. “Soil thermal response to temperature cycles and end boundary conditions of energy piles.” J. Geotech. Geoenviron. Eng. 148 (5): 04022027. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002794.
Fang, J., G. Kong, Y. Meng, L. Wang, and Q. Yang. 2020. “Thermomechanical behavior of energy piles and interactions within energy pile–raft foundations.” J. Geotech. Geoenviron. Eng. 146 (9): 04020079. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002333.
Garbellini, C., and L. Laloui. 2019. “Three-dimensional finite element analysis of piled rafts with energy piles.” Comput. Geotech. 114: 103115. https://doi.org/10.1016/j.compgeo.2019.103115.
Gawecka, K. A., D. M. G. Taborda, D. M. Potts, W. Cui, L. Zdravković, and M. S. H. Kasri. 2017. “Numerical modelling of thermo-active piles in London Clay.” Proc. Inst. Civ. Eng. Geotech. Eng. 170 (3): 201–219. https://doi.org/10.1680/jgeen.16.00096.
Guo, Y., G. Zhang, and S. Liu. 2018. “Investigation on the thermal response of full-scale PHC energy pile and ground temperature distribution in multi-layer strata”. Appl. Therm. Eng. 143 (Oct): 836–848. https://doi.org/10.1016/j.applthermaleng.2018.08.005.
Han, C., and X. B. Yu. 2020. “Analyses of the thermo-hydro-mechanical responses of energy pile subjected to non-isothermal heat exchange condition.” Renewable Energy 157: 150–163. https://doi.org/10.1016/j.renene.2020.04.118.
Jeong, S., H. Lim, J. K. Lee, and J. Kim. 2014. “Thermally induced mechanical response of energy piles in axially loaded pile groups.” Appl. Therm. Eng. 71 (1): 608–615. https://doi.org/10.1016/j.applthermaleng.2014.07.007.
Kong, G.-q., T. Cao, Y.-h. Hao, Y. Zhou, and L.-w. Ren. 2021. “Thermomechanical properties of an energy micro pile–raft foundation in silty clay.” Underground Space 6 (1): 76–84. https://doi.org/10.1016/j.undsp.2019.09.005.
Liu, R. Y. W., D. M. G. Taborda, K. A. Gawecka, W. Cui, and D. M. Potts. 2020. “Computational study on the effects of boundary conditions on the modelled thermally induced axial stresses in thermo-active piles.” In Proc., 17th European Conf. on Soil Mechanics and Geotechnical Engineering. Rejkjavik, Iceland: Icelandic Geotechnical Society.
Mimouni, T., and L. Laloui. 2015. “Behaviour of a group of energy piles.” Can. Geotech. J. 52 (12): 1913–1929. https://doi.org/10.1139/cgj-2014-0403.
Moradshahi, A., M. Faizal, A. Bouazza, and J. S. McCartney. 2021a. “Effect of nearby piles and soil properties on thermal behaviour of a field-scale energy pile.” Can. Geotech. J. 58 (9): 1351–1364. https://doi.org/10.1139/cgj-2020-0353.
Moradshahi, A., M. Faizal, A. Bouazza, and J. S. McCartney. 2021b. “Cross-sectional thermo-mechanical responses of energy piles.” Comput. Geotech. 138: 104320. https://doi.org/10.1016/j.compgeo.2021.104320.
Murphy, K. D., J. S. McCartney, and K. S. Henry. 2015. “Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations.” Acta Geotech. 10 (2): 179–195. https://doi.org/10.1007/s11440-013-0298-4.
Ng, C. W. W., and Q. J. Ma. 2019. “Energy pile group subjected to non-symmetrical cyclic thermal loading in centrifuge.” Géotechnique Lett. 9 (3): 173–177. https://doi.org/10.1680/jgele.18.00161.
Olgun, C. G., T. Y. Ozudogru, S. L. Abdelaziz, and A. Senol. 2015. “Long-term performance of heat exchanger piles.” Acta Geotech. 10 (5): 553–569. https://doi.org/10.1007/s11440-014-0334-z.
Ozudogru, T. Y., C. G. Olgun, and C. F. Arson. 2015. “Analysis of friction induced thermo-mechanical stresses on a heat exchanger pile in isothermal soil.” Geotech. Geol. Eng. 33 (2): 357–371. https://doi.org/10.1007/s10706-014-9821-0.
Peck, R. B., W. E. Hanson, and T. H. Thornburn. 1974. Foundation engineering. 2nd ed. Chichester, UK: Wiley.
Peng, H.-f., G.-q. Kong, H.-l. Liu, H. Abuel-Naga, and Y.-h. Hao. 2018. “Thermo-mechanical behaviour of floating energy pile groups in sand.” J. Zhejiang Univ. Sci. A 19: 638–649. https://doi.org/10.1631/jzus.A1700460.
Ravera, E., M. Sutman, and L. Laloui. 2020a. “Analysis of the interaction factor method for energy pile groups with slab.” Comput. Geotech. 119: 103294. https://doi.org/10.1016/j.compgeo.2019.103294.
Ravera, E., M. Sutman, and L. Laloui. 2020b. “Load transfer method for energy piles in a group with pile–soil–slab–pile interaction.” J. Geotech. Geoenviron. Eng. 146 (6): 04020042. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002258.
Rotta Loria, A. F., and L. Laloui. 2016. “The interaction factor method for energy pile groups.” Comput. Geotech. 80: 121–137. https://doi.org/10.1016/j.compgeo.2016.07.002.
Rotta Loria, A. F., and L. Laloui. 2017a. “The equivalent pier method for energy pile groups.” Géotechnique 67 (8): 691–702. https://doi.org/10.1680/jgeot.16.P.139.
Rotta Loria, A. F., and L. Laloui. 2017b. “Thermally induced group effects among energy piles.” Géotechnique 67 (5): 374–393. https://doi.org/10.1680/jgeot.16.P.039.
Rotta Loria, A. F., and L. Laloui. 2018. “Group action effects caused by various operating energy piles.” Géotechnique 68 (9): 834–841. https://doi.org/10.1680/jgeot.17.P.213.
Saggu, R., and T. Chakraborty. 2016. “Thermo-mechanical response of geothermal energy pile groups in sand.” Int. J. Geomech. 16 (4): 04015100. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000567.
Salciarini, D., F. Ronchi, E. Cattoni, and C. Tamagnini. 2015. “Thermo-mechanical effects induced by energy piles operation in a small piled raft.” Int. J. Geomech. 15 (2): 04014042. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000375.
Salciarini, D., F. Ronchi, and C. Tamagnini. 2017. “Thermo-hydro-mechanical response of a large piled raft equipped with energy piles: A parametric study.” Acta Geotech. 12 (4): 703–728. https://doi.org/10.1007/s11440-017-0551-3.
Sarma, K., and R. Saggu. 2020. “Implications of thermal cyclic loading on pile group behavior.” J. Geotech. Geoenviron. Eng. 146 (11): 04020114. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002363.
Singh, R. M., and A. Bouazza. 2013. “Thermal conductivity of geosynthetics.” Geotext. Geomembr. 39: 1–8. https://doi.org/10.1016/j.geotexmem.2013.06.002.
Singh, R. M., A. Bouazza, and B. Wang. 2015. “Near-field ground thermal response to heating of a geothermal energy pile: Observations from a field test.” Soils Found. 55 (6): 1412–1426. https://doi.org/10.1016/j.sandf.2015.10.007.
Suryatriyastuti, M. E., S. Burlon, and H. Mroueh. 2016. “On the understanding of cyclic interaction mechanisms in an energy pile group.” Int. J. Numer. Anal. Methods Geomech. 40 (1): 3–24. https://doi.org/10.1002/nag.2382.
Suryatriyastuti, M. E., H. Mroueh, and S. Burlon. 2012. “Understanding the temperature-induced mechanical behaviour of energy pile foundations.” Renewable Sustainable Energy Rev. 16 (5): 3344–3354. https://doi.org/10.1016/j.rser.2012.02.062.
Wang, B., A. Bouazza, D. Barry-Macaulay, M. R. Singh, M. Webster, C. Haberfield, G. Chapman, and S. Baycan. 2012. “Field and laboratory investigation of a heat exchanger pile.” In GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, Geotechnical Special Publication 124, edited by R. D. Hryciw, A. Athanasopoulos-Zekkos, and N. Yesiller, 4396–4405. Reston, VA: ASCE.
Wang, B., A. Bouazza, R. M. Singh, C. Haberfield, D. Barry-Macaulay, and S. Baycan. 2015. “Posttemperature effects on shaft capacity of a full-scale geothermal energy pile.” J. Geotech. Geoenviron. Eng. 141 (4): 04014125. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001266.
Wu, D., H. Liu, G. Kong, and C. W. W. Ng. 2020. “Interactions of an energy pile with several traditional piles in a row.” J. Geotech. Geoenviron. Eng. 146 (4): 06020002.
You, S., X. Cheng, H. Guo, and Z. Yao. 2014. “In-situ experimental study of heat exchange capacity of CFG pile geothermal exchangers.” Energy Build. 79: 23–31. https://doi.org/10.1016/j.enbuild.2014.04.021.
Yu, K. L., R. M. Singh, A. Bouazza, and H. H. Bui. 2015. “Determining soil thermal conductivity through numerical simulation of a heating test on a heat exchanger pile.” Geotech. Geol. Eng. 33 (2): 239–252. https://doi.org/10.1007/s10706-015-9870-z.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 22Issue 11November 2022

History

Received: Jun 20, 2021
Accepted: Apr 25, 2022
Published online: Aug 30, 2022
Published in print: Nov 1, 2022
Discussion open until: Jan 30, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Dept. of Civil Engineering, Monash Univ., 23 College Walk, Clayton, VIC 3800, Australia. ORCID: https://orcid.org/0000-0003-1412-7793. Email: [email protected]
Research Fellow, Dept. of Civil Engineering, Monash Univ., 23 College Walk, Clayton, VIC 3800, Australia. ORCID: https://orcid.org/0000-0002-2094-2789. Email: [email protected]
Abdelmalek Bouazza [email protected]
Professor, Dept. of Civil Engineering, Monash Univ., 23 College Walk, Clayton, VIC 3800, Australia (corresponding author). Email: [email protected]
Professor and Department Chair, Dept. of Structural Engineering, Univ. of California San Diego, 9500 Gilman Drive, SME 442J, La Jolla, CA 92093-0085. ORCID: https://orcid.org/0000-0003-2109-0378. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share