Technical Papers
Nov 24, 2021

Discrete Fresh Concrete Model for Simulation of Ordinary, Self-Consolidating, and Printable Concrete Flow

This article has been corrected.
VIEW CORRECTION
This article has been corrected.
VIEW CORRECTION
Publication: Journal of Engineering Mechanics
Volume 148, Issue 2

Abstract

This paper deals with the formulation and validation of the discrete fresh concrete (DFC) model to simulate the rheological behavior of self-consolidating, ordinary, and printable concrete in the fluid state immediately after mixing. The DFC model is formulated within the framework of the discrete-element method (DEM), and it models the interaction among coarse aggregate particles embedded in a fine mortar. The formulation is based on stress-strain constitutive equations through which the behavior of fresh concrete can be described by parameters with clear physical meaning. This study presents a rigorous methodology for estimating the model key input parameters by the comparison of numerical simulations with experimental data. This methodology includes (1) a series of sensitivity analyses and simulations to establish the relationship between constitutive parameters and macroscopic properties; and (2) numerical simulations of experimental tests commonly used to characterize the fresh state behavior of concrete. Finally, the paper discusses the application of the DFC model to the simulation of concrete additive manufacturing.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request. Available data are some input and output files in text format for the input and VTK format for the output.

References

Andrade, J., K.-W. Lim, C. Avila, and I. Vlahinić. 2012. “Granular element method for computational particle mechanics.” Comput. Methods Appl. Mech. Eng. 244 (Oct): 262–274. https://doi.org/10.1016/j.cma.2012.06.012.
ASTM. 2020. Standard test method for slump of hydraulic-cement concrete. ASTM C143/C143M-20. West Conshohocken, PA: ASTM.
Bažant, Z. P., M. Tabbara, M. T. Kazemi, and G. Pijaudier-Cabot. 1990. “Random particle model for fracture of aggregate or fiber composites.” J. Eng. Mech. 116 (8): 1686–1705. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686).
Bentz, D. P., E. J. Garboczi, and K. A. Snyder. 1999. “Hard core/soft shell microstructural model for studying percolation and transport in three-dimensional composite media.” ACI Proc. 55 (Dec): 62–65.
Bingham, E. 1916. “An investigation of the laws of plastic flow.” Bull. Bur. Stand. 13 (Mar): 309–353. https://doi.org/10.6028/bulletin.304.
Bolander, J., and S. Saito. 1998. “Fracture analyses using spring networks with random geometry.” Eng. Fract. Mech. 61 (5): 569–591. https://doi.org/10.1016/S0013-7944(98)00069-1.
Bos, F., R. Wolfs, Z. Ahmed, and T. Salet. 2016. “Additive manufacturing of concrete in construction: Potentials and challenges of 3d concrete printing.” In Virtual and physical prototyping, 1–17. London: Taylor & Francis.
British and European Standard Specifications. 2010a. Testing fresh concrete. Self-compacting concrete. L-box test. BS EN 12350-10. New Delhi, India.
British and European Standard Specifications. 2010b. Testing fresh concrete. self-compacting concrete. V-funnel test. BS EN 12350-9. New Delhi, India.
Busari, A. A., J. O. Akinmusuru, and B. I. Dahunsi. 2018. “Review of sustainability in self-compacting concrete: The use of waste and mineral additives as supplementary cementitious materials and aggregates.” Port. Electrochim. Acta 36 (3): 147–162. https://doi.org/10.4152/pea.201803147.
Buswell, R. A., W. R. L. Silva, S. Z. Jones, and J. Dirrenberger. 2018. “3D printing using concrete extrusion: A roadmap for research.” Cem. Concr. Res. 112 (Oct): 37–49.
Campello, E. M. B., and K. Seko. 2016. “Rapid generation of particle packs at high packing ratios for DEM simulations of granular compacts.” Lat. Am. J. Solids Struct. 13 (Apr): 23–50. https://doi.org/10.1590/1679-78251694.
Cao, G., and Z. Li. 2017. “Numerical flow simulation of fresh concrete with viscous granular material model and smoothed particle hydrodynamics.” Cem. Concr. Res. 100 (Oct): 263–274. https://doi.org/10.1016/j.cemconres.2017.07.005.
Chang, Z., Y. Xu, Y. Chen, Y. Gan, E. Schlangen, and B. Šavija. 2021. “A discrete lattice model for assessment of buildability performance of 3D-printed concrete.” Comput.-Aided Civ. Infrastruct. Eng. 36 (5): 638–655. https://doi.org/10.1111/mice.12700.
Choi, H.-S., and H.-G. Choi. 2019. “A study on the coating thickness of surface modified aggregate by using the excess paste theory and rheology value.” J. Korea Inst. Struct. Maint. Inspection 23 (5): 23–29.
Christensen, G. 1991. “Modelling the flow of fresh concrete: The slump test.” Ph.D. thesis, Dept. of Chemical Engineering, Princeton Univ.
Chu, H., and A. Machida. 1996. “Numerical simulation of fluidity behaviour of fresh concrete by 2D distinct element method.” Trans. Japan Concr. Inst. 18 (May): 1–8.
Chu, H., A. Machida, and N. Suzuki. 1996. “Experimental investigation and DEM simulation of filling capacity of fresh concrete.” Trans. Japan Concr. Inst. 29 (May): 9–14.
Cui, W., T. Ji, M. Li, and X. Wu. 2016. “Simulating the workability of fresh self-compacting concrete with random polyhedron aggregate based on DEM.” Mater. Struct. 50 (1): 1–12. https://doi.org/10.1617/s11527-016-0963-9.
Cundall, P., and O. Strack. 1979. “A discrete numerical model for granular assemblies.” Géotechnique 29 (1): 47–65. https://doi.org/10.1680/geot.1979.29.1.47.
Cusatis, G., Z. P. Bažant, and L. Cedolin. 2003a. “Confinement-shear lattice model for concrete damage in tension and compression: I. Theory.” J. Eng. Mech. 129 (12): 1439–1448. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1439).
Cusatis, G., Z. P. Bažant, and L. Cedolin. 2003b. “Confinement-shear lattice model for concrete damage in tension and compression: II. Computation and validation.” J. Eng. Mech. 129 (12): 1439–1448. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1439).
Cusatis, G., A. Mencarelli, D. Pelessone, and J. Baylot. 2011a. “Lattice discrete particle model (LDPM) for failure behavior of concrete. II: Calibration and validation.” Cem. Concr. Compos. 33 (9): 891–905. https://doi.org/10.1016/j.cemconcomp.2011.02.010.
Cusatis, G., D. Pelessone, and A. Mencarelli. 2011b. “Lattice discrete particle model (LDPM) for concrete failure behavior of concrete. I: Theory.” Cem. Concr. Compos. 33 (9): 881–890. https://doi.org/10.1016/j.cemconcomp.2011.02.011.
Cusatis, G., R. Rezakhani, and E. Schauffert. 2016. “Discontinuous cell method (DCM) for the simulation of cohesive fracture and fragmentation of continuous media.” Eng. Fract. Mech. 170 (Feb): 1–22. https://doi.org/10.1016/j.engfracmech.2016.11.026.
Cusatis, G., and X. Zhou. 2014. “High-order microplane theory for quasi-brittle materials with multiple characteristic lengths.” J. Eng. Mech. 140 (7): 04014046. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000747.
Delgado Camacho, D., P. Clayton, W. J. O’Brien, C. C. Seepersad, M. Juenger, R. Ferron, and S. Salamone. 2018. “Applications of additive manufacturing in the construction industry—A forward-looking review.” Autom. Constr. 89 (May): 110–119. https://doi.org/10.1016/j.autcon.2017.12.031.
El Cheikh, K., S. Rémond, N. Khalil, and G. Aouad. 2017. “Numerical and experimental studies of aggregate blocking in mortar extrusion.” Constr. Build. Mater. 145 (Aug): 452–463. https://doi.org/10.1016/j.conbuildmat.2017.04.032.
Geert De Schutter, G., V. Mechterine, and G. Habert. 2018. “Vision of 3D printing with concrete—Technical, economic and environmental potentials.” Cem. Concr. Res. 112 (Oct): 25–36. https://doi.org/10.1016/j.cemconres.2018.06.001.
Ghaffar, S., J. Corker, and M. Fan. 2018. “Additive manufacturing technology and its implementation in construction as an eco-innovative solution.” Autom. Constr. 93 (Sep): 1–11. https://doi.org/10.1016/j.autcon.2018.05.005.
Ghasemi, Y., M. Emborg, and A. Cwirzen. 2019. “A theoretical study on optimal packing in mortar and paste.” Accessed November 3, 2019. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1295167&dswid=-4498.
Ghourchian, S., M. Wyrzykowski, and P. Lura. 2016. “The bleeding test: A simple method for obtaining the permeability and bulk modulus of fresh concrete.” Cem. Concr. Res. 89 (Nov): 249–256. https://doi.org/10.1016/j.cemconres.2016.08.016.
Gosselin, C., R. Duballet, P. Roux, N. Gaudilliere, J. Dirrenberger, and P. Morel. 2016. “Large-scale 3D printing of ultra-high performance concrete—A new processing route for architects and builders.” Mater. Des. 100 (Jun): 102–109. https://doi.org/10.1016/j.matdes.2016.03.097.
Gram, A., and J. Silfwerbrand. 2011. “Numerical simulation of fresh SCC flow: Applications.” Mater. Struct. 44 (4): 805–813. https://doi.org/10.1617/s11527-010-9666-9.
Gudžulić, V., T. S. Dang, and G. Meschke. 2019. “Computational modeling of fiber flow during casting of fresh concrete.” Comput. Mech. 63 (6): 1111–1129. https://doi.org/10.1007/s00466-018-1639-9.
He, Z., P. Stroeven, M. Stroeven, and L. Sluys. 2009. “Characterization of the packing of aggregate in concrete by a discrete element approach.” Mater. Charact. 60 (10): 1082–1087. https://doi.org/10.1016/j.matchar.2009.02.012.
Herschel, W. H., and R. Bulkley. 1926. “Konsistenzmessungen von gummi-benzollösungen.” Kolloid Z. 39 (4): 291–300. https://doi.org/10.1007/BF01432034.
Hoornahad, H., and E. Koenders. 2014. “Simulating macroscopic behavior of self-compacting mixtures with DEM.” Cem. Concr. Compos. 54 (Nov): 80–88. https://doi.org/10.1016/j.cemconcomp.2014.04.006.
Hosseinpoor, M., K. H. Khayat, and A. Yahia. 2017. “Numerical simulation of self-consolidating concrete flow as a heterogeneous material in l-box set-up: Effect of rheological parameters on flow performance.” Cem. Concr. Compos. 83 (Oct): 290–307. https://doi.org/10.1016/j.cemconcomp.2017.07.027.
Jacobsen, S., L. Haugan, T. A. Hammer, and E. Kalogiannidis. 2009. “Flow conditions of fresh mortar and concrete in different pipes.” Cem. Concr. Res. 39 (11): 997–1006. https://doi.org/10.1016/j.cemconres.2009.07.005.
Jarny, S., N. Roussel, R. Le Roy, and P. Coussot. 2008. “Modelling thixotropic behavior of fresh cement pastes from MRI measurements.” Cem. Concr. Res. 38 (5): 616–623. https://doi.org/10.1016/j.cemconres.2008.01.001.
Jarny, S., N. Roussel, S. Rodts, F. Bertrand, R. Le Roy, and P. Coussot. 2005. “Rheological behavior of cement pastes from MRI velocimetry.” Cem. Concr. Res. 35 (10): 1873–1881. https://doi.org/10.1016/j.cemconres.2005.03.009.
Jeyaraj, J. A. 2018. Numerical modeling of concrete flow in drilled shaft. Tampa, FL: Univ. of South Florida.
Jiao, D., C. Shi, Q. Yuan, X. An, and Y. Liu. 2018. “Mixture design of concrete using simplex centroid design method.” Cem. Concr. Compos. 89 (May): 76–88. https://doi.org/10.1016/j.cemconcomp.2018.03.001.
Jiao, D., C. Shi, Q. Yuan, X. An, Y. Liu, and H. Li. 2017. “Effect of constituents on rheological properties of fresh concrete—A review.” Cem. Concr. Compos. 83 (Oct): 146–159. https://doi.org/10.1016/j.cemconcomp.2017.07.016.
Karakurt, C. T., A. O. Çelik, C. Yılmazer, V. Kiriççi, and E. Özyaşar. 2018. “CFD simulations of self-compacting concrete with discrete phase modeling.” Constr. Build. Mater. 186 (Oct): 20–30. https://doi.org/10.1016/j.conbuildmat.2018.07.106.
Kennedy, C. T. 1970. “The design of concrete mixes.” ACI Proc. 36 (2): 373–400. https://doi.org/10.14359/8528.
Khayat, K., and D. Feys. 2010. Design, production and placement of self-consolidating concrete. Berlin: Springer.
Khayat, K. H., and A. F. Omran. 2010. “Evaluation of SCC formwork pressure.” Concr. Int. 32 (6): 30–34.
Kobayakawa, M., S. Miyai, T. Tsuji, and T. Tanaka. 2019. “Interaction between dry granular materials and an inclined plate (comparison between large-scale DEM simulation and three-dimensional wedge model).” J. Terramech. 90 (Aug): 3–10. https://doi.org/10.1016/j.jterra.2019.08.006.
Koehler, E., D. Fowler, C. Ferraris, and S. Amziane. 2006. “A new, portable rheometer for fresh self-consolidating concrete a new, portable rheometer for fresh self-consolidating concrete.” ACI Mater. J. 233 (Apr): 97.
Kruger, J., S. Cho, S. Zeranka, C. Viljoen, and G. van Zijl. 2020. “3D concrete printer parameter optimisation for high rate digital construction avoiding plastic collapse.” Composites, Part B 183 (Feb): 107660. https://doi.org/10.1016/j.compositesb.2019.107660.
Kurokawa, Y., Y. Tanigawa, H. Mori, and Y. Nishinosono. 1996. “Analytical study on effect of volume fraction of coarse aggregate on Bingham’s constants of fresh concrete.” Trans. Japan Concr. Inst. 18 (May): 37–44.
Landau, L. D., and E. M. Lifshitz. 1989. “Fluid mechanics.” In Vol. 6 of Course of theoretical physics. 2nd ed. Oxford: Butterworth-Heinemann.
Lashkarbolouk, H., A. Halabian, and M. Chamani. 2014. “Simulation of concrete flow in v-funnel test and the proper range of viscosity and yield stress for SCC.” Mater. Struct. 47 (10): 1729–1743. https://doi.org/10.1617/s11527-013-0147-9.
Lee, J. H., J. H. Kim, and J. Y. Yoon. 2018. “Prediction of the yield stress of concrete considering the thickness of excess paste layer.” Constr. Build. Mater. 173 (Jun): 411–418. https://doi.org/10.1016/j.conbuildmat.2018.03.124.
Li, B., Y. Chen, and J. Chen. 2016. “Modeling of soil–claw interaction using the discrete element method (DEM).” Soil Tillage Res. 158 (May): 177–185. https://doi.org/10.1016/j.still.2015.12.010.
Lootens, D., P. Jousset, L. Martinie, N. Roussel, and R. Flatt. 2009. “Yield stress during setting of cement pastes from penetration tests.” Cem. Concr. Res. 39 (5): 401–408. https://doi.org/10.1016/j.cemconres.2009.01.012.
Martys, N. S. 2005. “Study of a dissipative particle dynamics based approach for modeling suspensions.” J. Rheol. 49 (2): 401–424. https://doi.org/10.1122/1.1849187.
Mechtcherine, V., A. Gram, K. Krenzer, J. Schwabe, S. Shyshko, and N. Roussel. 2013. “Simulation of fresh concrete flow using discrete element method (DEM): Theory and application.” Mater. Struct. 47 (4): 805–813. https://doi.org/10.1617/s11527-013-0084-7.
Mechtcherine, V., and S. Shyshko. 2007. “Simulating the behavior of fresh concrete using distinct element method.” In Proc., 5th Int. RILEM Symp. on Self-Compacting Concrete-SCC, 467–472. Bagneux, France: International Union of Laboratories and Experts in Construction Materials, Systems and Structures.
Mechtcherine, V., and S. Shyshko. 2015. “Simulating the behaviour of fresh concrete with the distinct element method—Deriving model parameters related to the yield stress.” Cem. Concr. Compos. 55 (Jan): 81–90. https://doi.org/10.1016/j.cemconcomp.2014.08.004.
Meng, Q., H. Wang, M. Cai, W. Xu, X. Zhuang, and T. Rabczuk. 2020. “Three-dimensional mesoscale computational modeling of soil-rock mixtures with concave particles.” Eng. Geol. 277 (Nov): 105802. https://doi.org/10.1016/j.enggeo.2020.105802.
Mori, H., and Y. Tanigawa. 1992. “Simulation methods for fluidity of fresh concrete.” Mem. Sch. Eng. Nagoya Univ. 44 (1): 71–133.
Nitka, M., and J. Tejchman. 2020. “Comparative DEM calculations of fracture process in concrete considering real angular and artificial spherical aggregates.” Eng. Fract. Mech. 239 (Nov): 107309. https://doi.org/10.1016/j.engfracmech.2020.107309.
Noor, M., and T. Uomoto. 1999. “Three-dimensional discrete element simulation of rheology tests of self-compacting concrete.” In Proc., 1st Int. RILEM Symp. on SCC, 35–46. London: Taylor & Francis.
O’Sullivan, C. 2011. “Particle-based discrete element modeling: Geomechanics perspective.” Int. J. Geomech. 11 (6): 449–464. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000024.
Ovarlez, G., F. Bertrand, and S. Rodts. 2006. “Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging.” J. Rheol. 50 (3): 259–292. https://doi.org/10.1122/1.2188528.
Panda, B., L. Hui, and M. Tan. 2019. “Mechanical properties and deformation behaviour of early age concrete in the context of digital construction.” Composites, Part B 165 (May): 563–571. https://doi.org/10.1016/j.compositesb.2019.02.040.
Paul, S., Y. Wei, Y. W. D. Tay, B. Panda, and M. Tan. 2017. “Fresh and hardened properties of 3D printable cementitious materials for building and construction.” Arch. Civ. Mech. Eng. 18 (1): 311–319. https://doi.org/10.1016/j.acme.2017.02.008.
Peng, C., L. Zhan, W. Wu, and B. Zhang. 2021. “A fully resolved SPH-DEM method for heterogeneous suspensions with arbitrary particle shape.” Powder Technol. 387 (Jul): 509–526. https://doi.org/10.1016/j.powtec.2021.04.044.
Petersson, O., and H. Hakami. 2001. “Simulation of self-compacting concrete—Laboratory experiments and numerical modelling of testing methods, slump flow, J-ring and L-box test.” In Proc., 2nd Int. SCC Conf. Bagneux, France: International Union of Laboratories and Experts in Construction Materials, Systems and Structures.
Pieralisi, R., S. Cavalaro, and A. Aguado. 2016. “Discrete element modelling of the fresh state behavior of pervious concrete.” Cem. Concr. Res. 90 (Dec): 6–18. https://doi.org/10.1016/j.cemconres.2016.09.010.
Puri, U. C., and T. Uomoto. 1998. “Estimation of virtual thickness of mortar layer over an aggregate in fresh concrete by excess paste theory.” In Proc., 53rd Annual Conf. of Japan Society of Civil Engineers, 668–669. Tokyo: Japan Society of Civil Engineers.
Rao, I., and K. Rajagopai. 1999. “The effect of the slip boundary condition on the flow of fluids in a channel.” Texas Acta Mech. 135 (3): 113–126. https://doi.org/10.1007/BF01305747.
Reiner, M. 1949. Deformation and flow, an elementary introduction to theoretical rheology. London: H.K. Lewis and Company.
Remond, S., and P. Pizette. 2014. “A DEM hard-core soft-shell model for the simulation of concrete flow.” Cem. Concr. Res. 58 (Apr): 169–178. https://doi.org/10.1016/j.cemconres.2014.01.022.
Rezakhani, R., M. Alnaggar, and G. Cusatis. 2019. “Multiscale homogenization analysis of alkali–silica reaction (ASR) effect in concrete.” Engineering 5 (6): 1139–1154. https://doi.org/10.1016/j.eng.2019.02.007.
Roussel, N. 2004. “Correlation between yield stress and slump: Comparison between numerical simulations and concrete rheometers results.” Mater. Struct. 39 (4): 501–509. https://doi.org/10.1617/s11527-005-9035-2.
Roussel, N. 2005. “Steady and transient flow behaviour of fresh cement pastes.” Cem. Concr. Res. 35 (9):1656–1664. https://doi.org/10.1016/j.cemconres.2004.08.001.
Roussel, N. 2006. “A thixotropy model for fresh fluid concretes: Theory, validation and applications.” Cem. Concr. Res. 36 (10): 1797–1806. https://doi.org/10.1016/j.cemconres.2006.05.025.
Roussel, N. 2018. “Rheological requirements for printable concretes.” Cem. Concr. Res. 112 (Oct): 76–85. https://doi.org/10.1016/j.cemconres.2018.04.005.
Roussel, N., M. Geiker, F. Dufour, L. Thrane, and P. Szabo. 2007. “Computational modeling of concrete flow: General overview.” Cem. Concr. Res. 37 (9): 1298–1307. https://doi.org/10.1016/j.cemconres.2007.06.007.
Roussel, N., and A. Gram. 2014. Simulation of fresh concrete flow: State-of-the-art report of the RILEM technical committee 222-SCF. Berlin: Springer.
Roussel, N., G. Ovarlez, S. Gauffinet, and C. Brumaud. 2012. “The origins of thixotropy of fresh cement pastes.” Cem. Concr. Res. 42 (1): 148–157. https://doi.org/10.1016/j.cemconres.2011.09.004.
Sarpkaya, T. 1966. “Experimental determination of the critical Reynolds number for pulsating poiseuille flow.” J. Basic Eng. 88 (3): 589–598. https://doi.org/10.1115/1.3645920.
Schlangen, E., and J. van Mier. 1992. “Experimental and numerical analysis of micromechanisms of fracture of cement-based composites.” Cem. Concr. Compos. 14 (2): 105–118. https://doi.org/10.1016/0958-9465(92)90004-F.
Schott, D., J. Mohajeri, J. Jovanova, S. Lommen, and W. de Kluijver. 2021. “Design framework for DEM-supported prototyping of grabs including full-scale validation.” J. Terramech. 96 (Aug): 29–43. https://doi.org/10.1016/j.jterra.2021.04.003.
Shen, W., M. Wu, B. Zhang, G. Xu, J. Cai, X. Xiong, and D. Zhao. 2021. “Coarse aggregate effectiveness in concrete: Quantitative models study on paste thickness, mortar thickness and compressive strength.” Constr. Build. Mater. 289 (Jun): 123171. https://doi.org/10.1016/j.conbuildmat.2021.123171.
Shyshko, S. 2013. “Numerical simulation of the rheological behavior of fresh concrete.” Ph.D. thesis, School of Civil and Environmental Engineering, Technische Universität Dresden.
Shyshko, S., and V. Mechtcherine. 2010. “Simulating fresh concrete behavior-establishing a link between the Bingham model and parameters of a DEM-based numerical model.” In Proc., HetMat-Modelling of Heterogenous Materials, RILEM Proceedings PRO 76RILEM, edited by W. Brameshuber, 211–219. Bagneux, France: International Union of Laboratories and Experts in Construction Materials, Systems and Structures.
Singh, R. B., and B. Singh. 2018. “Rheological behaviour of different grades of self-compacting concrete containing recycled aggregates.” Constr. Build. Mater. 161 (Feb): 354–364. https://doi.org/10.1016/j.conbuildmat.2017.11.118.
Sleiman, H., A. Perrot, and S. Amziane. 2010. “A new look at the measurement of cementitious paste setting by Vicat test.” Cem. Concr. Res. 40 (5): 681–686. https://doi.org/10.1016/j.cemconres.2009.12.001.
Smith, W., D. Melanz, C. Senatore, K. Iagnemma, and H. Peng. 2014. “Comparison of discrete element method and traditional modeling methods for steady-state wheel-terrain interaction of small vehicles.” J. Terramech. 56 (Dec): 61–75. https://doi.org/10.1016/j.jterra.2014.08.004.
Stroeven, P. 2000. “Stereological approach to roughness of fracture surfaces and tortuosity of transport paths in concrete.” Cem. Concr. Compos. 22 (5): 331–341. https://doi.org/10.1016/S0958-9465(00)00018-4.
Stroeven, P., H. He, Z. Guo, and M. Stroeven. 2011. “Discrete element modelling approach to assessment of granular properties in concrete.” Zhejiang Univ. Sci. A 12 (5): 335–344. https://doi.org/10.1631/jzus.A1000223.
Subramaniam, K., and X. Wang. 2010. “An investigation of microstructure evolution in cement paste through setting using ultrasonic and rheological measurements.” Cem. Concr. Res. 40 (1): 33–44. https://doi.org/10.1016/j.cemconres.2009.09.018.
Sun, J., Y. Wang, Y. Ma, J. Tong, and Z. Zhang. 2018. “DEM simulation of bionic subsoilers (tillage depth> 40 cm) with drag reduction and lower soil disturbance characteristics.” Adv. Eng. Software 119 (Sep): 30–37. https://doi.org/10.1016/j.advengsoft.2018.02.001.
Takagi, Y., K. Takasu, H. Koyamada, and H. Suyama. 2018. “A basic study on fluid prediction of mortar with various powders.” Int. J. 14 (42): 146–150. https://doi.org/10.21660/2018.42.3548.
Tay, Y. W. D., M. Li, and M. Tan. 2019. “Effect of printing parameters in 3d concrete printing: Printing region and support structures.” J. Mater. Process. Technol. 271 (Sep): 261–270. https://doi.org/10.1016/j.jmatprotec.2019.04.007.
Tay, Y. W. D., B. Panda, S. C. Paul, N. A. N. Mohamed, M. J. Tan, and K. F. Leong. 2017. “3D printing trends in building and construction industry: A review.” Virtual Phys. Prototyping 12 (3): 261–276. https://doi.org/10.1080/17452759.2017.1326724.
Taylor, G. I. 1923. “Stability of a viscous liquid contained between two rotating cylinders.” Philos. Trans. R. Soc. London, Ser. A 223 (1): 289–343. https://doi.org/10.1098/rsta.1923.0008.
Tekeste, M. Z., L. R. Balvanz, J. L. Hatfield, and S. Ghorbani. 2019. “Discrete element modeling of cultivator sweep-to-soil interaction: Worn and hardened edges effects on soil-tool forces and soil flow.” J. Terramech. 82 (Apr): 1–11. https://doi.org/10.1016/j.jterra.2018.11.001.
Tekeste, M. Z., T. R. Way, Z. Syed, and R. L. Schafer. 2020. “Modeling soil-bulldozer blade interaction using the discrete element method (DEM).” J. Terramech. 88 (Apr): 41–52. https://doi.org/10.1016/j.jterra.2019.12.003.
Thanh, H. T., J. Li, and Y. Zhang. 2019. “Numerical modelling of the flow of self-consolidating engineered cementitious composites using smoothed particle hydrodynamics.” Constr. Build. Mater. 211 (Jun): 109–119. https://doi.org/10.1016/j.conbuildmat.2019.03.210.
Thilakarathna, P., K. K. Baduge, P. Mendis, V. Vimonsatit, and H. Lee. 2020. “Mesoscale modelling of concrete—A review of geometry generation, placing algorithms, constitutive relations and applications.” Eng. Fract. Mech. 231 (May): 106974. https://doi.org/10.1016/j.engfracmech.2020.106974.
Thrane, L. N., P. Szabo, M. Geiker, M. Glavind, and H. Stang. 2004. “Simulation of the test method “L-box” for self-compacting concrete.” Annu. Trans. Nord. Rheol. Soc. 12 (1): 47–54.
Ting, J., B. Corkum, C. Kauffman, and C. Greco. 1989. “Discrete numerical model for soil mechanics.” J. Geotech. Eng. 115 (3): 379–398. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:3(379).
Tran-Duc, T., T. Ho, and N. Thamwattana. 2021. “A smoothed particle hydrodynamics study on effect of coarse aggregate on self-compacting concrete flows.” Int. J. Mech. Sci. 190 (Jan): 106046. https://doi.org/10.1016/j.ijmecsci.2020.106046.
Tregger, N., L. Ferrara, and S. P. Shah. 2008. “Identifying cement rheological properties from the mini-slump-flow test.” ACI Mater. J. 105 (6): 558–566.
Tropea, C., A. L. Yarin, and J. F. Foss. 2007. Springer handbook of experimental fluid mechanics. Berlin: Springer.
Tsuji, T., Y. Nakagawa, N. Matsumoto, Y. Kadono, T. Takayama, and T. Tanaka. 2012. “3-D DEM simulation of cohesive soil-pushing behavior by bulldozer blade.” J. Terramech. 49 (1): 37–47. https://doi.org/10.1016/j.jterra.2011.11.003.
Vaitova, M., L. Jendele, and J. Cervenka. 2020. “3D printing of concrete structures modelled by fem.” Solid State Phenom. 309 (Apr): 261–266. https://doi.org/10.4028/www.scientific.net/SSP.309.261.
Vantyghem, G., T. Ooms, and W. De Corte. 2021. “Voxelprint: A grasshopper plug-in for voxel-based numerical simulation of concrete printing.” Autom. Constr. 122 (Feb): 103469. https://doi.org/10.1016/j.autcon.2020.103469.
Vasilic, K. 2016. “A numerical model for self-compacting concrete flow through reinforced sections: A porous medium analogy.” Ph.D. thesis, School of Civil and Environmental Engineering, Technische Univ. Dresden.
Wang, X., P. Taylor, K. Wang, and G. Morcous. 2015. “Effects of paste-to-voids volume ratio on performance of self-consolidating concrete mixtures.” Mag. Concr. Res. 67 (14): 771–785. https://doi.org/10.1680/macr.14.00313.
Weng, Y., M. Li, M. J. Tan, and S. Qian. 2018. Design 3D printing cementitious materials via fuller Thompson theory and Marson-Percy model, 600–610. New York: Elsevier.
Wiberg, V., M. Servin, and T. Nordfjell. 2021. “Discrete element modelling of large soil deformations under heavy vehicles.” J. Terramech. 93 (Feb): 11–21. https://doi.org/10.1016/j.jterra.2020.10.002.
Wolfs, R., F. Bos, and T. Salet. 2018. “Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing.” Cem. Concr. Res. 106 (Apr): 103–116. https://doi.org/10.1016/j.cemconres.2018.02.001.
Wolfs, R., F. Bos, and T. Salet. 2019. “Triaxial compression testing on early age concrete for numerical analysis of 3d concrete printing.” Cem. Concr. Compos. 104 (Nov): 103344. https://doi.org/10.1016/j.cemconcomp.2019.103344.
Zareiyan, B., and B. Khoshnevis. 2017. “Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete.” Autom. Constr. 83 (Nov): 212–221. https://doi.org/10.1016/j.autcon.2017.08.019.
Zhang, X., Z. Zhang, Z. Li, Y. Li, and T. Sun. 2020. “Filling capacity analysis of self-compacting concrete in rock-filled concrete based on DEM.” Constr. Build. Mater. 233 (Feb): 117321. https://doi.org/10.1016/j.conbuildmat.2019.117321.
Zhang, Y., Y. Zhang, G. Liu, Y. Yang, M. Wu, and B. Pang. 2018. “Fresh properties of a novel 3D printing concrete ink.” Constr. Build. Mater. 174 (Jun): 263–271. https://doi.org/10.1016/j.conbuildmat.2018.04.115.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 148Issue 2February 2022

History

Received: Jun 15, 2021
Accepted: Sep 28, 2021
Published online: Nov 24, 2021
Published in print: Feb 1, 2022
Discussion open until: Apr 24, 2022

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Elham Ramyar, S.M.ASCE [email protected]
Ph.D. Student, Dept. of Civil and Environmental Engineering, Northwestern Univ., 2145 Sheridan Rd., Evanston, IL 60208. Email: [email protected]
Professor of Civil and Environmental Engineering and Director of Graduate Studies, Dept. of Civil and Environmental Engineering, Northwestern Univ., 2145 Sheridan Rd., Evanston, IL 60208 (corresponding author). ORCID: https://orcid.org/0000-0001-7436-3910. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Computational Analysis of Concrete Flow in a Reinforced Bored Pile Using the Porous Medium Approach, Applied Mechanics, 10.3390/applmech3020028, 3, 2, (481-495), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share