Abstract

This article develops an analysis-oriented stress-strain model for rubberized concrete (RuC) passively confined with fiber-reinforced polymer (FRP) composites. The model was calibrated using highly instrumented experiments on 38 cylinders with high rubber content (60% replacement of the total aggregate volume) tested under uniaxial compression. Parameters investigated include cylinder size (diameter×height: 100×200  mm or 150×300  mm), as well as amount (two, three, four, or six layers) and type of external confinement (carbon or aramid FRP sheets). FRP-confined rubberized concrete (FRP CRuC) develops high confinement effectiveness (fcc/fco up to 11) and extremely high deformability (axial strains up to 6%). It is shown that existing stress-strain models for FRP-confined conventional concrete do not predict the behavior of such highly deformable FRP CRuC. Based on the results, this study develops a new analysis-oriented model that predicts accurately the behavior of such concrete. This article contributes toward developing advanced constitutive models for analysis/design of sustainable high-value FRP CRuC components that can develop high deformability.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7/2007-2013] under Grant Agreement No. 603722 and the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 658248. The authors also thank Richard Morris from Tarmac UK for providing the portland limestone cement (CEM II 52.5 N). The AFRP and CFRP systems were kindly provided by Weber Saint-Gobain (UK) and Fyfe Europe S.A., respectively.

References

ASTM. 2015. Standard practice for use of unbonded caps in determination of compressive strength of hardened cylindrical concrete specimens. ASTM C1231/C1231M. West Conshohocken, PA: ASTM.
Batayneh, M. K., I. Marie, and I. Asi. 2008. “Promoting the use of crumb rubber concrete in developing countries.” Waste Manage. 28 (11): 2171–2176. https://doi.org/10.1016/j.wasman.2007.09.035.
Becque, J., A. K. Patnaik, and S. H. Rizkalla. 2003. “Analytical models for confined concrete with FRP tubes.” J. Compos. Constr. 7 (1): 31–38. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:1(31).
Bompa, D. V., A. Y. Elghazouli, B. Xu, P. J. Stafford, and A. M. Ruiz-Teran. 2017. “Experimental assessment and constitutive modelling of rubberised concrete materials.” Constr. Build. Mater. 137 (Apr): 246–260. https://doi.org/10.1016/j.conbuildmat.2017.01.086.
BSI (British Standards Institution). 2009a. Admixtures for concrete, mortar and grout. Concrete admixtures. Definitions requirements, conformity, marking and labelling. BS EN 934-2. London: BSI.
BSI (British Standards Institution). 2009b. Plastics—Determination of tensile properties. Part 5: Test conditions for unidirectional fiber-reinforced plastic composites. BS EN ISO 527-5. London: BSI.
BSI (British Standards Institution). 2011. Cement, composition, specifications and conformity criteria for common cements. BS EN 197-1. London: BSI.
BSI (British Standards Institution). 2012. Fly ash for concrete. Definition, specifications and conformity criteria. BS EN 450-1. London: BSI.
Buyukozturk, O., and T. Tseng. 1984. “Concrete in biaxial cyclic compression.” J. Struct. Eng. 110 (3): 461–476. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:3(461).
Chang, G. A., and J. B. Mander. 1994. Seismic energy based fatigue damage analysis of bridge columns: Part 1—Evaluation of seismic capacity. Buffalo, NY: State Univ. of New York.
Chipperfield, A. J., and P. J. Fleming. 1995. The MATLAB genetic algorithm toolbox. London: Institution of Engineering and Technology.
Cui, C., and S. A. Sheikh. 2010. “Experimental study of normal-and high-strength concrete confined with fiber-reinforced polymers.” J. Compos. Constr. 14 (5): 553–561. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000116.
Dai, J., Y. Bai, and J. Teng. 2011. “Behavior and modeling of concrete confined with FRP composites of large deformability.” J. Compos. Constr. 15 (6): 963–974. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000230.
Duarte, A. P. C., B. A. Silva, N. Silvestre, J. de Brito, E. Júlio, and J. M. Castro. 2016. “Tests and design of short steel tubes filled with rubberised concrete.” Eng. Struct. 112 (Apr): 274–286. https://doi.org/10.1016/j.engstruct.2016.01.018.
Fardis, M. N., and H. H. Khalili. 1982. “FRP-encased concrete as a structural material.” Mag. Concr. Res. 34 (121): 191–202. https://doi.org/10.1680/macr.1982.34.121.191.
fib (Fédération internationale du béton). 2010. Model code for concrete structures 2010. Berlin: fib.
Flores-Medina, D., N. F. Medina, and F. Hernández-Olivares. 2014. “Static mechanical properties of waste rests of recycled rubber and high quality recycled rubber from crumbed tyres used as aggregate in dry consistency concretes.” Mater. Struct. 47 (7): 1185–1193. https://doi.org/10.1617/s11527-013-0121-6.
Ganesan, N., B. Raj, and A. P. Shashikala. 2013. “Behavior of self-consolidating rubberized concrete beam-column joints.” ACI Mater. J. 110 (6): 697–704.
Garcia, R., Y. Jemaa, Y. Helal, M. Guadagnini, and K. Pilakoutas. 2014. “Seismic strengthening of severely damaged beam-column RC joints using CFRP.” J. Compos. Constr. 18 (2): 04013048. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000448.
Güneyisi, E., M. Gesoğlu, and T. Özturan. 2004. “Properties of rubberized concretes containing silica fume.” Cem. Concr. Res. 34 (12): 2309–2317. https://doi.org/10.1016/j.cemconres.2004.04.005.
Jiang, T., and J. G. Teng. 2007. “Analysis-oriented stress-strain models for FRP-confined concrete.” Eng. Struct. 29 (11): 2968–2986. https://doi.org/10.1016/j.engstruct.2007.01.010.
Kotsovos, M. D., and J. B. Newman. 1981. “Effect of boundary conditions upon the behaviour of concrete under concentrations of load.” Mag. Concr. Res. 33 (116): 161–170. https://doi.org/10.1680/macr.1981.33.116.161.
Lam, L., and J. G. Teng. 2003. “Design-oriented stress-strain model for FRP-confined concrete.” Constr. Build. Mater. 17 (6): 471–489. https://doi.org/10.1016/S0950-0618(03)00045-X.
Lam, L., and J. G. Teng. 2004. “Ultimate condition of fiber reinforced polymer-confined concrete.” J. Compos. Constr. 8 (6): 539–548. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(539).
Lam, L., J. G. Teng, C. H. Cheung, and Y. Xiao. 2006. “FRP-confined concrete under axial cyclic compression.” Cem. Concr. Compos. 28 (10): 949–958. https://doi.org/10.1016/j.cemconcomp.2006.07.007.
Li, G., S.-S. Pang, and S. I. Ibekwe. 2011. “FRP tube encased rubberized concrete cylinders.” Mater. Struct. 44 (1): 233–243. https://doi.org/10.1617/s11527-010-9622-8.
Li, G., M. A. Stubblefield, G. Garrick, J. Eggers, C. Abadie, and B. Huang. 2004. “Development of waste tire modified concrete.” Cem. Concr. Res. 34 (12): 2283–2289. https://doi.org/10.1016/j.cemconres.2004.04.013.
Lim, J. C., and T. Ozbakkaloglu. 2014. “Confinement model for FRP-confined high-strength concrete.” J. Compos. Constr. 18 (4): 04013058. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000376.
Mander, J. B., M. J. N. Priestley, and R. Park. 1988. “Theoretical stress-strain model for confined concrete.” J. Struct. Eng. 114 (8): 1804–1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
Matthys, S., H. Toutanji, and L. Taerwe. 2006. “Stress-strain behavior of large-scale circular columns confined with FRP composites.” J. Struct. Eng. 132 (1): 123–133. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(123).
Medina, N. F., R. Garcia, I. Hajirasouliha, K. Pilakoutas, M. Guadagnini, and S. Raffoul. 2018. “Composites with recycled rubber aggregates: Properties and opportunities in construction.” Constr. Build. Mater. 188 (Nov): 884–897. https://doi.org/10.1016/j.conbuildmat.2018.08.069.
Miyauchi, K., S. Inoue, T. Kuroda, and A. Kobayashi. 1999. “Strengthening effects with carbon fiber sheet for concrete column.” Proc. Jpn. Concr. Inst. 21 (3): 1453–1458.
Mortazavi, A. A. 2003. “Repair/stregthening of RC columns with FRP.” Ph.D. thesis, Dept. of Civil and Structural Engineering, Univ. of Sheffield.
Mortazavi, A. A., K. Pilakoutas, and K. S. Son. 2003. “RC column strengthening by lateral pre-tensioning of FRP.” Constr. Build. Mater. 17 (6): 491–497. https://doi.org/10.1016/S0950-0618(03)00046-1.
Neville, A. M. 1995. Properties of concrete. Essex, UK: Pearson Education.
Osorio, E., J. M. Bairán, and A. R. Marí. 2013. “Lateral behavior of concrete under uniaxial compressive cyclic loading.” Mater. Struct. 46 (5): 709–724. https://doi.org/10.1617/s11527-012-9928-9.
Ozbakkaloglu, T. 2013. “Compressive behavior of concrete-filled FRP tube columns: Assessment of critical column parameters.” Eng. Struct. 51: 188–199. https://doi.org/10.1016/j.engstruct.2013.01.017.
Ozbakkaloglu, T., and E. Akin. 2012. “Behavior of FRP-confined normal- and high-strength concrete under cyclic axial compression.” J. Compos. Constr. 16 (4): 451–463. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000273.
Papastergiou, P. 2010. “A confinement model for concrete wrapped or pretensioned with FRP.” Ph.D. thesis, Dept. of Civil and Structural Engineering, Univ. of Sheffield.
Paulay, T., and M. J. N. Priestley. 1992. Seismic design of reinforced concrete and masonry buildings. New York: Wiley.
Pilakoutas, K., S. Raffoul, P. Papastergiou, R. Garcia, M. Guadagnini, and I. Hajirasouliha. 2015. “A study of the reuse of all tyre components in concrete: The Anagennisi Project.” In Proc., Int. Conf. on Sustainable Structural Concrete. Paris: RILEM.
Popovics, S. 1973. “A numerical approach to the composite stress-strain curve of concrete.” Cem. Concr. Res. 3 (5): 583–599. https://doi.org/10.1016/0008-8846(73)90096-3.
Raffoul, S., R. Garcia, D. Escolano-Margarit, M. Guadagnini, I. Hajirasouliha, and K. Pilakoutas. 2017. “Behaviour of unconfined and FRP-confined rubberised concrete in axial compression.” Constr. Build. Mater. 147 (Aug): 388–397. https://doi.org/10.1016/j.conbuildmat.2017.04.175.
Raffoul, S., R. Garcia, K. Pilakoutas, M. Guadagnini, and N. F. Medina. 2016. “Optimisation of rubberised concrete with high rubber content: An experimental investigation.” Constr. Build. Mater. 124 (Oct): 391–404. https://doi.org/10.1016/j.conbuildmat.2016.07.054.
Rousakis, T. C., and K. I. Athanasios. 2012. “Adequately FRP confined reinforced concrete columns under axial compressive monotonic or cyclic loading.” Mater. Struct. 45 (7): 957–975. https://doi.org/10.1617/s11527-011-9810-1.
Saadatmanesh, H., M. R. Ehsani, and M.-W. W. Li. 1994. “Strength and ductility of concrete columns externally reinforced with fiber composite straps.” ACI Struct. J. 91 (4): 434–447.
Spoelstra, M. R., and G. Monti. 1999. “FRP-confined concrete model.” J. Compos. Constr. 3 (3): 143–150. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143).
Teng, J. G., T. Jiang, L. Lam, and Y. Z. Luo. 2009. “Refinement of a design-oriented stress-strain model for FRP-confined concrete.” J. Compos. Constr. 13 (4): 269–278. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000012.
Toutanji, H. A. 1996. “The use of rubber tire particles in concrete to replace mineral aggregates.” Cem. Concr. Compos. 18 (2): 135–139. https://doi.org/10.1016/0958-9465(95)00010-0.
Toutanji, H. A. 1999. “Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets.” ACI Mater. J. Am. Concr. Inst. 96 (3): 397–404.
Youssf, O., M. A. ElGawady, J. E. Mills, and X. Ma. 2014. “An experimental investigation of crumb rubber concrete confined by fibre reinforced polymer tubes.” Constr. Build. Mater. 53 (Feb): 522–532. https://doi.org/10.1016/j.conbuildmat.2013.12.007.
Zhang, B., T. Yu, and J. G. Teng. 2015. “Behaviour of concrete-filled FRP tubes under cyclic axial compression.” J. Compos. Constr. 19 (3): 04014060. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000523.
Zinno, A., G. P. Lignola, A. Prota, G. Manfredi, and E. Cosenza. 2010. “Influence of free edge stress concentration on effectiveness of FRP confinement.” Compos. Part B: Eng. 41 (7): 523–532. https://doi.org/10.1016/j.compositesb.2010.07.003.

Information & Authors

Information

Published In

Go to Journal of Composites for Construction
Journal of Composites for Construction
Volume 23Issue 6December 2019

History

Received: Oct 17, 2017
Accepted: Mar 11, 2019
Published online: Aug 27, 2019
Published in print: Dec 1, 2019
Discussion open until: Jan 27, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Research Associate, Dept. of Civil and Structural Engineering, Univ. of Sheffield, Sir Frederick Mappin Bldg., Mappin St., Sheffield S1 3JD, UK (corresponding author). ORCID: https://orcid.org/0000-0003-2261-206X. Email: [email protected]
Lecturer, Dept. of Mechanical Engineering, Polytechnic Univ. of Madrid, Calle José Gutiérrez Abascal, 2, Madrid 28006, Spain. ORCID: https://orcid.org/0000-0001-9324-0799. Email: [email protected]
Assistant Professor, School of Engineering, Univ. of Warwick, Library Rd., Coventry CV4 7AL, UK. ORCID: https://orcid.org/0000-0002-6363-8859. Email: [email protected]
Senior Lecturer, Dept. of Civil and Structural Engineering, Univ. of Sheffield, Sir Frederick Mappin Bldg., Mappin St., Sheffield S1 3JD, UK. ORCID: https://orcid.org/0000-0003-2551-2187. Email: [email protected]
Professor, Dept. of Civil and Structural Engineering, Univ. of Sheffield, Sir Frederick Mappin Bldg., Mappin St., Sheffield S1 3JD, UK. ORCID: https://orcid.org/0000-0001-6672-7665. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share