TECHNICAL PAPERS
Jul 1, 1996

Compressibility of Clays: Fundamental and Practical Aspects

This article has a reply.
VIEW THE REPLY
Publication: Journal of Geotechnical Engineering
Volume 122, Issue 7

Abstract

The compressibility of natural clays is influenced by numerous factors: strain rate, temperature, sampling disturbance, stress path, and some restructuring factors. The first part of the paper reviews the effects of these factors, in particular of strain rate and temperature. The influence of drainage conditions on the effective stress-strain curves followed in various subelements of a consolidating clay layer is also discussed. In a second part, in-situ conditions are considered. In the overconsolidated range, and at the preconsolidation pressure, the behavior is influenced by most of the aforementioned factors, and can be compared with laboratory test results only on the basis of a semiempirical approach. In the normally consolidated range, major factors are strain rate and temperature, and their effect can be evaluated. In some cases, however, structuring phenomena can exist and decrease the viscous effects. Finally, practical conclusions concerning the evaluation of long-term settlements are given.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Berre, T., and Iversen, K.(1972). “Oedometer tests with different specimen heights on a clay exhibiting large secondary compression.”Géotechnique, London, U.K., 22(1), 27–52.
2.
Bjerrum, L.(1967). “Engineering geology of Norwegian normally consolidated marine clays as related to the settlement of buildings.”Géotechnique, London, U.K., 17(2), 83–119.
3.
Bjerrum, L.(1972). “Embankments on soft ground.”Proc. Spec. Conf. on Perf. of Earth and Earth-Supported Struct., ASCE, New York, N.Y., 2, 1–54.
4.
Borja, R. I.(1992). “Generalized creep and stress relaxation model for clays.”J. Geotech. Engrg., ASCE, 118(11), 1765–1786.
5.
Bouclin, G. (1990). “Anisotropie de perméabilité des argiles de Saint-Esprit,” MS thesis, Laval Univ., Québec, Canada.
6.
Boudali, M., Leroueil, S., and Srinivasa Murthy, B. R.(1994). “Viscous behaviour of natural clays.”Proc., 13th ICSMFE, 1, 411–416.
7.
Burghigholi, A., Cavalera, L., Chieppa, V., Jamiolkowski, M., Mancuso, C., Marchetti, S., Pane, V., Paoliani, P., Silvestri, F., Vinale, F., and Vittori, E.(1991). “Geotechnical characterization of Fucino clay.”Proc. 10th Eur. Conf. on Soil Mech. and Found. Engrg., 1, 27–40.
8.
Burland, J. B.(1990). “On the compressibility and shear strength of natural clays.”Géotechnique, London, U.K., 40(3), 329–378.
9.
Casagrande, A.(1932). “The structure of clays and its importance in foundation engineering.”J. Boston Soc. Civ. Engrg., 19(4), 168–209.
10.
Crawford, C. B.(1965). “The resistance of soil structure to consolidation.”Can. Geotech. J., 2(2), 90–97.
11.
Crooks, J. H. A., Becker, D. E., Jefferies, M. G., and McKenzie, K. (1984). “Yield behaviour and consolidation—1: pore pressure response.”Proc. ASCE Symp. on Sedimentation Consolidation Models: Predictions and Validation, ASCE, New York, N.Y., 356–381.
12.
Eriksson, L. G.(1989). “Temperature effects on consolidation properties of sulphide clays.”Proc. 12th ICSMFE, Rio de Janeiro, 3, 2087–2090.
13.
Hanzawa, H.(1989). “Evaluation of design parameters for soft clays as related to geological stress history.”Soils and Found., Tokyo, Japan, 29(2), 99–111.
14.
Hanzawa, H.(1991). “A new approach to determine the shear strength of soft clay.”Proc., Int. Conf. on Geotech. Engrg. for Coast. Dev., Geo-Coast '91, Yokohama, Japan, 1, 23–28.
15.
Hanzawa, H., Fudaya, T., and Suzuki, K.(1990). “Evaluation of engineering properties for an Ariake clay.”Soils and Found., Tokyo, Japan, 30(4), 11–24.
16.
Hight, D. W., Boese, R., Butcher, A. P., Clayton, C. R. I., and Smith, P. R.(1992). “Disturbance of the Bothkennar clay prior to laboratory testing.”Géotechnique, London, U.K., 42(2), 199–217.
17.
Hoikkala, S. (1991). “Continuous and incremental loading oedometer tests,” MS thesis, Helsinki Univ. of Technol., Espoo, Finland (in Finnish).
18.
Hueckell, T., and Baldi, G.(1990). “Thermoplasticity of saturated clays: experimental constitutive study.”J. Geotech. Engrg., ASCE, 116(12), 1778–1795.
19.
Imai, G., and Tang, Y. X.(1992). “A constitutive equation of one-dimensional consolidation derived from inter-connected tests.”Soils and Found., Tokyo, Japan, 32(2), 83–96.
20.
Jamiolkowski, M., Ladd, C. C., Germaine, J. T., and Lancellotta, R.(1985). “New developments in field and laboratory testing of soils.”Proc. 11th ICSMFE, San Francisco, 1, 57–153.
21.
Kabbaj, M. (1985). “Aspects rhéologiques des argiles naturelles en consolidation,” PhD thesis, Laval Univ., Québec, Canada.
22.
Kabbaj, M., Tavenas, F., and Leroueil, S.(1988). “In situ and laboratory stress-strain relations.”Géotechnique, London, U.K., 38(1), 83–100.
23.
Kolisoja, P., Sahi, K., and Hartikainen, J.(1989). “An automatic triaxial-oedometer device.”Proc. 12th ICSMFE, Rio de Janeiro, 1, 61–64.
24.
Lacasse, S., Berre, T., and Lefebvre, G.(1985). “Block sampling of sensitive clays.”Proc. 11th ICSMFE, San Francisco, 2, 887–892.
25.
La Rochelle, P., Sarrailh, J., Tavenas, F., Roy, M., and Leroueil, S.(1981). “Causes of sampling disturbance and design of new sampler for sensitive soils.”Can. Geotech. J., 11(1), 142–164.
26.
Larsson, R. (1986). “Consolidation of soft soils.”Swedish Geotech. Inst. Rep. No. 29, Linköping, Sweden.
27.
Larsson, R.(1987). “Long term behaviour of two test fills in Sweden.”Proc. Int. Symp. on Geotech. Engrg. of Soft Soils, Mexico City, 1, 239–247.
28.
Larsson, R., and Sällfors, G. (1985). “Automatic continuous consolidation testing in Sweden.”Consolidation of soils, ASTM STP 892, ASTM, Philadelphia, Pa., 299–328.
29.
Lavallée, J. G., St-Arnaud, G., Morel, R., and Hammamji, Y. (1990). “Remblai d'essai pour vérifier la consolidation de l'argile avec des drains synthétiques.”Proc. 43rd Can. Geotech. Conf., Québec, Canada, 525–531.
30.
Leonards, G. A. (1972). “Discussion of `Shallow foundations.”' Proc., ASCE Spec. Conf. on Perf. of Earth and Earth-Supported Struct., ASCE, New York, N.Y., 3, 169–173.
31.
Leonards, G. A., and Altschaeffl, A. G.(1964). “Compressibility of clay.”J. Soil Mech. Found. Div., ASCE, 90(5), 133–155.
32.
Leroueil, S.(1988). “Recent developments in consolidation of natural clays.”Can. Geotech. J., 25(1), 85–107.
33.
Leroueil, S. (1995). “Could it be that clays have no unique way of behaving during consolidation?”Int. Symp. on Compression and Consolidation of Clayey Soils, Keynote Lecture, Hiroshima, Vol. 2.
34.
Leroueil, S., and Kabbaj, M.(1987). “Discussion of `Settlements analysis of embankments on soft clays,' by G. Mesri and Y. K. Choi.”J. Geotech. Engrg., ASCE, 113(9), 1067–1070.
35.
Leroueil, S., Tavenas, F., Mieussens, C., and Peignaud, M.(1978). “Construction pore pressures in clay foundations under embankments, Part II: generalized behaviour.”Can. Geotech. J., 15(1), 66–82.
36.
Leroueil, S., Tavenas, F., Samson, L., and Morin, P.(1983). “Preconsolidation pressure of Champlain clays. Part II: Laboratory determination.”Can. Geotech. J., 20(4), 803–816.
37.
Leroueil, S., Kabbaj, M., Tavenas, F., and Bouchard, R.(1985). “Stress-strain-strain rate relation for the compressibility of sensitive natural clays.”Géotechnique, London, U.K., 35(2), 159–180.
38.
Leroueil, S., Kabbaj, M., Tavenas, F., and Bouchard, R. (1986). “Closure to `Stress-strain-strain rate relation for the compressibility of sensitive natural clays.”' Géotechnique, London, U.K., 36(2), 288–290.
39.
Leroueil, S., Kabbaj, M., and Tavenas, F. (1988). “Study of the validity of a σv−εvε˙v model in in-situ conditions.”Soils and Found., Tokyo, Japan, 28(3), 13–25.
40.
Liang, R. Y., and Ma, F.(1992). “A unified elasto-viscoplasticity model for clays, Part I: Theory.”Comp. and Geotechnics, 13(2), 71–87.
41.
Locat, J., and Lefebvre, G.(1985). “The compressibility and sensitivity of an artificially sedimented clay soil: The Grande Baleine marine clay, Québec, Canada.”Marine Geotechnol., 6(1), 1–27.
42.
Magnan, J. P.(1992). “Le rôle du fluage dans les calculs de consolidation et de tassement des sols compressibles.”Bulletin de Liaison des Laboratoires des Ponts et Chaussées, 180, 19–24.
43.
Magnan, J. P., Baghery, S., Brucy, M., and Tavenas, F.(1979). “Étude numérique de la consolidation unidimensionnelle en tenant compte des variations de la perméabilité et de la compressibilité du sol, du fluage et de la non-saturation.”Bulletin de Liaison des Laboratoires des Ponts et Chaussées, 103, 83–94.
44.
Magnan, J. P., Khemissa, M., and Josseaume, H.(1994). “Influence du prélèvement sur le comportement des argiles.”Proc. 13th ICSMFE, New Delhi, 1, 317–320.
45.
Mesri, G., and Choi, Y. K.(1985a). “Settlement analysis of embankments of soft clays.”J. Geotech. Engrg., ASCE, 111(4), 441–464.
46.
Mesri, G., and Choi, Y. K.(1985b). “The uniqueness of the end-of-primary (EOP) void ratio-effective stress relationship.”Proc. 11th ICSMFE, San Francisco, 2, 587–590.
47.
Mesri, G., and Feng, T. W.(1986). “Discussion of `Stress-strain-strain rate relation for the compressibility of sensitive natural clays,' by S. Leroueil, M. Kabbaj, F. Tavenas, and R. Bouchard.”Géotechnique, London, U.K., 36(2), 283–287.
48.
Mesri, G., Lo, D. O. D., and Feng, T. W. (1994). “Settlement of embankments on soft clays.”Proc. Conf. on Vertical and Horizontal Deformations of Found. and Embankments: Settlement '94, Geotech. Spec. Publ. No. 40, ASCE, New York, N.Y., 1, 8–56.
49.
Mizukami, J. I., and Motoyashiki, M. (1992). “Consolidation yield stress by constant rate of strain test.”Proc. 28th Annual Conf. of the Japanese Soc. of Soil Mech. and Found. Engrg., 419–420 (in Japanese).
50.
Morin, P., Leroueil, S., and Samson, L.(1983). “Preconsolidation pressure of Champlain clays. Part I: In-situ determination.”Can Geotech. J., 20(4), 782–802.
51.
Nash, D. F. T., Sills, G. C., and Davison, L. R.(1992). “One-dimensional consolidation testing of soft clay from Bothkennar.”Géotechnique, London, U.K., 42(2), 241–256.
52.
Oka, F., Adachi, T., and Okano, Y.(1986). “Two-dimensional consolidation analysis using an elasto-viscoplastic constitutive equation.”Int. J. Numer. and Anal. Methods in Geomech., 10(1), 1–16.
53.
Okumura, T., and Suzuki, K.(1991). “Analysis of consolidation settlement considering the change in compressibility.”Proc. Int. Conf. on Geotech. Engrg. for Coast. Dev., Geo-Coast-91, Yokohama, 1, 57–62.
54.
Paakkunainen, A. L. (1990). “Continuous loading oedometer tests in settlement calculation,” MS thesis, Tempere Univ. of Technol., Tempere, Finland (in Finnish).
55.
Perret, D. (1995). “Développement de la résistance dans un sédiment fin en formation,” PhD thesis, Laval Univ., Québec, Canada.
56.
Perret, D., Locat, J., and Leroueil, S.(1995). “Strength development with burial during early diagenesis in fine grained sediments from Saguenay Fjord, Québec, Canada.”Can. Geotech. J., 32(2), 247–262.
57.
Rajot, J. P. (1992). “A theory for the time dependent yielding and creep of clay,” PhD thesis, Virginia Polytech. Inst. and State Univ., Blacksburg, Va.
58.
Schmertmann, J. H.(1955). “The undisturbed consolidation behavior of clay.”Trans ASCE,, 120(1), 12–16.
59.
Société d' Énergie de la Baie James. (1983). “Experts Committee on Soft Clays from the NBR Complex,”Final Rep., Montréal, Québec, Canada.
60.
“Standard test method for one-dimensional consolidation properties of soils using controlled-strain loading.” (1993). D 4186-89: Annual Book of ASTM Standards, ASTM, Philadelphia, Pa., 04.08, 637–641.
61.
St-Arnaud, G., Morel, R., and Lavallée, J. G. (1992). “Comportement de la fondation argileuse traitée avec des drains synthétiques sous le remblai d'essai Olga-C.”Internal Rep., Hydro-Québec, Service géologie et structures, Montréal, Canada.
62.
Šuklje, L.(1957). “The analysis of the consolidation process by the isotache method.”Proc., 4th ICSMFE, London, U.K., 1, 200–206.
63.
Szavits-Nossan, V. (1988). “Intrinsic time behavior of cohesive soils during consolidation,” PhD thesis, Univ. of Colorado, Boulder, Colo.
64.
Taylor, D. W. (1942). “Research on consolidation of clays.”Series 82, Massachusetts Inst. of Technol., Cambridge, Mass.
65.
Tidfors, M., and Sällfors, G.(1989). “Temperature effect on preconsolidation pressure.”Geotech. Test J., 12(1), 93–97.
66.
Yin, J., and Graham, J.(1989). “Viscous-elastic-plastic modelling of one-dimensional time-dependent behaviour of clays.”Can. Geotech. J., 26(2), 199–209.

Information & Authors

Information

Published In

Go to Journal of Geotechnical Engineering
Journal of Geotechnical Engineering
Volume 122Issue 7July 1996
Pages: 534 - 543

History

Published online: Jul 1, 1996
Published in print: Jul 1996

Permissions

Request permissions for this article.

Authors

Affiliations

S. Leroueil
Prof. of Civ. Engrg., Université Laval, Sainte-Foy, Québec, G1K 7P4, Canada.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share