Technical Papers
Aug 9, 2021

Resistance and Economic Speed of Ships and Tows in Inland Waterways

Publication: Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume 147, Issue 6

Abstract

The resistance of commercial vessels in inland waterways is an essential and widely investigated problem. Depending on vessel and channel shape and size, many empirical equations were developed in the past to determine the resistance of vessels. In order to obtain an accurate relationship to predict the total resistance of inland vessels for variable channel and vessel dimensions, numerous model resistance tests with motor ships, push tows, and barge convoys were evaluated. If the speed of the vessel is limited to a defined economic speed, which is usually not exceeded in inland waterways, it is shown that the resistance from model tests of both ships and tows can be determined well by a resistance equation, which is based on a formula derived by van de Kaa for canals. A satisfactory agreement of the calculation results can be demonstrated for motor ships with measurements in field tests. It turns out that the adopted resistance equation of van de Kaa provides good results for inland vessels in a wide range of inland waterway dimensions.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code used during the study appear in publications and published or unpublished reports of the two institutions indicated in the acknowledgments. Data and reports of the Development Centre for Ship Technology and Transport Systems (DST) should be directly requested at the DST in Duisburg. Unpublished reports by the former FAS in Berlin are available from the author on request.

Acknowledgments

The author would like to express his special thanks to the Development Centre for Ship Technology and Transport Systems in Duisburg (DST), the former Duisburg Model Basin (VBD). The extensive and systematic ship resistance tests in the towing tank and the well-documented test results in reports and publications of the DST made a tremendous contribution to this study. Many thanks also to my esteemed colleague at the BAW Karlsruhe and the former FAS Berlin, Dr. Manfred Fuehrer. The model tests performed and supervised by him and the analysis of the test results in FAS reports made a large contribution to the evaluations of the resistance of ships and tows in the case of strongly restricted channels.

Notation

The following symbols are used in this paper:
AC
undisturbed wetted channel cross section without vessel (m2);
AM
submerged midship cross-sectional area (m2);
AW
channel cross section reduced by vessel and drawdown (m2);
B
total beam (m);
BC
channel width (m);
BWL
beam on the waterline (m);
CB
block coefficient;
CF
hull frictional coefficient in deep water;
CF,B
shallow water frictional coefficient for the ship bottom;
CGlobal
global resistance coefficient;
CP, CP0, CP1, CP2
pressure (form) resistance coefficient;
CShallow
shallow water resistance coefficient;
Fr
channel Froude number;
Frh
depth Froude number;
FrL
length Froude number;
FrRh
Froude number in terms of the hydraulic radius;
g
gravitational acceleration (m/s2);
h
water depth (m);
hm
average water depth (m);
index 1
cross-sectional quantities with the vessel;
L
total length of vessel or barges (m);
L/∇1/3
length-displacement ratio (slenderness);
LWL
length on the waterline (m);
m
blockage ratio;
PC
undisturbed wetted channel perimeter (m);
PM
wetted midship perimeter (m);
R2
coefficient of determination;
RF
frictional resistance of the full-size vessel (N);
RFM
frictional resistance of the model vessel (N);
Rh
hydraulic radius (m);
RT
total resistance of the full-size vessel (N);
RTM
total resistance of the model vessel (N);
S
wetted area of the hull (m2);
S/∇2/3
wetted area coefficient;
SB
ship bottom area (m2);
SL
submerged lateral area of the ship (m2);
T
draft of ship or barges (m);
V
vessel speed relative to the water (m/s);
Vcr
(Schijfs) subcritical speed (m/s);
Vec
limiting economic speed (m/s);
Vn
nautically permissible speed (m/s);
VR
average return velocity (m/s);
Vscr
super-critical speed (m/s);
W
water level width of the channel (m);
Z
average water level drawdown (m);
α
correction factor for irregularity of the return flow field;
ΔCF
additional surface roughness coefficient;
volumetric displacement (m3);
λ
model scale;
ν
kinematic viscosity (m2/s); and
ρ
water density (kg/m3).

References

BAW (Bundesanstalt für Wasserbau). 2005. Principles for the design of bank and bottom protection for inland waterways. Bulletin No. 88 of the Federal Waterways Engineering and Research Institute. Karlsruhe, Germany: BAW.
Bialonski, W., and B. Zigic. 2007. Entwicklung eines technisch-wirtschaftlichen Konzeptes für den gemischten Transport unterschiedlicher Ladungsarten mit dem Binnenschiff-Koppelverband. [In German.] DST-Rep. No. 1850. Duisburg, Germany: Development Centre for Ship Technology and Transport Systems (DST).
Blau, E., and M. Fuehrer. 1964. Schiffswiderstand und Rückstromgeschwindigkeit, Teil 2: Widerstandsuntersuchungen. [In German.] Rep. No. FAS-293. Berlin: Forschungsanstalt für Schiffahrt Wasser- und Grundbau (FAS).
BMVBS (Bundesministerium für Verkehr, Bau und Stadtentwicklung). 2011. Richtlinien für Regelquerschnitte von Binnenschifffahrtskanälen. Bonn, Germany: BMVBS.
Bouwmeester, J., E. J. van de Kaa, H. A. Nuhoff, and R. G. J. van Orden. 1977. Recent studies on push-towing as a base for dimensioning waterways. DHL Publication No. 194. Delft, Netherlands: Delft Hydraulic Laboratory.
Briggs, M. J., M. Vantorre, K. Uliczka, and P. Debaillon. 2010. “Prediction of squat for underkeel clearance.” Chap. 26 in Handbook of coastal and ocean engineering, edited by Y. C. Kim, 723–774. Singapore: World Scientific.
Broß, H., and R. Henn. 2012. Entwicklung eines standardisierten Verfahrens zur Abschätzung der Energieeinsparungspotenziale von Binnenschiffen. [In German.] DST-Rep. No. 2076. Duisburg, Germany: Development Centre for Ship Technology and Transport Systems (DST).
Broß, H., and J. Zöllner. 2008. Modelluntersuchungen zur Wirkung von Bug- und Heckruderanlagen im Hinblick auf die Entwicklung von Ansätzen für die Modellfamilie PETRA. [In German.] DST-Rep. No. 1889. Duisburg, Germany: Development Centre for Ship Technology and Transport Systems (DST).
Broß, H., and J. Zöllner. 2009. Ergänzende Modelluntersuchung zum DST-Report 1889: Modelluntersuchungen zur Wirkung von Bug- und Heckruderanlagen im Hinblick auf die Entwicklung von Ansätzen für die Modellfamilie PETRA. [In German.] DST-Rep. No. 1952. Duisburg, Germany: Development Centre for Ship Technology and Transport Systems (DST).
Friedhoff, B., R. Henn, and S. List. 2014. Entwicklung eines Blattkettenantriebs für Schubboote und andere Binnenschiffe. [In German.] DST-Rep. No. 2109. Duisburg, Germany: Development Centre for Ship Technology and Transport Systems (DST).
Fuehrer, M. 1984. Widerstandsbeeinflussung von Schubverbänden durch Querschnitts- und Rauhigkeitsparameter. [In German.] Rep. No. FAS-780.2. Berlin: Forschungsanstalt für Schiffahrt Wasser- und Grundbau (FAS).
Glazik, G. 1964. “Hydraulische Gesichtspunkte bei der Wahl von Uferbefestigungen für Binnenwasserstraßen.” [In German.] In Vol. 11 of Mitteilungen der Forschungsanstalt für Schiffahrt, Wasser- und Grundbau, 47–86. Berlin: Forschungsanstalt für Schriftenreihe, Wasser- und Grundbau (FAS).
Graewe, H. 1967. “Der zweckmäßige Querschnitt von Binnenschiffahrtskanälen der Wasserstraßenklasse IV.” [In German.] Doctoral thesis, Fakultät für Bauwesen, Technische Hochschule Aachen.
Heise, G., and M. Schneider. 1961. “Widerstandsmessungen an Schubprahm-modellen.” In Vol. 1 of Mitteilungen der Forschungsanstalt für Schiffahrt, Wasser- und Grundbau, Berlin, Schriftenreihe Schiffahrt, 15–46. Berlin: Forschungsanstalt für Schriftenreihe, Wasser- und Grundbau.
Helm, K. 1940. “Tiefen- und Breiteneinflüsse von Kanälen auf Schiffsantriebe.” [In German.] In Hydromechanische Probleme des Schiffsantriebs, Teil 2, edited by G. Kempf, 144–171. Munich, Germany: Verlag R. Oldenburg.
Helm, K. 1960. Gutachten über die günstigste Größe des Kanalquerschnittes für einen vollschiffigen Anschluß Hamburgs an die deutschen Binnenwasserstraßen. [In German.] HSVA-Rep. No. 1218. Hamburg, Germany: Hamburgische Schiffbau-Versuchsanstalt (HSVA).
Helm, K. 1964. Einfluß der verschiedenen Flachwasserprofile auf Widerstand und Vortrieb von Binnenschiffen. [In German.] VBD-Rep. No. 333. Duisburg, Germany: Development Centre for Ship Technology and Transport Systems (DST).
Henschke, W. 1966. Vol. 1 of Schiffbautechnisches Handbuch. [In German.] 2nd ed. Berlin: Verlag Technik.
Heuser, H. 1961. “Untersuchungen über Formgebung, Antrieb und Manövrierfähigkeit von Motorleichter-Schubverbänden für den Einsatz auf flachem Wasser.” [In German.] Schiff&Hafen 13 (11): 1003–1016.
Heuser, H. 1965. “Linienentwurf und Modelluntersuchung von großen, schnellen Binnenfrachtschiffen geringer Völligkeit.” [In German.] Schiff&Hafen 17 (1): 10–13.
Heuser, H. 1985. “Auswirkungen der Leichter-Formgebung auf Widerstand und Leistungsbedarf von Schubverbänden, Wahl von Zwei- und Dreischraubenschubbooten für den Vortrieb.” [In German.] Z. Binnenschiffahrt-ZfB 112 (11): 343–347. Special print.
Heuser, H. 1991. “New progress in designing inland cargo vessels. A winner for fuel-efficiency.” In Vol. 45 of Studies in environmental science: Freight transport and the environment, edited by M. Kroon, R. Smit, and J. van Ham, 151–162. Amsterdam, Netherlands: Elsevier.
Heuser, H., and W. Nussbaum. 1985. Systematische Widerstands- und Propulsionsversuche mit Keilspant-Leichterverbänden auf begrenzten Wassertiefen. [In German.] VBD-Rep. No. 1146. Duisburg, Germany: Development Centre for Ship Technology and Transport Systems (DST).
Howe, C. W. 1967. “Mathematical model of barge tow performance.” J. Waterw. Harbors Div. 93 (4): 153–166. https://doi.org/10.1061/JWHEAU.0000524.
Linde, F. 2017. 3D modelling of ship resistance in restricted waterways and application to an inland eco-driving prototype. Compiègne, France: Université de Technologie de Compiègne.
Marchal, J., and Y. Shen. 1999. “On the economic ship speed in restricted waterway.” In Proc., 1st European Inland Waterway Navigation Conf., Budapest, Hungary: Dept. of Aircraft and Ships, Technical University of Budapest.
Marchal, J. L. J., Y.-D. Shen, and D. Kicheva. 1996. “An empirical formula to estimate the resistance of a convoy in a restricted waterway.” J. Ship Res. 40 (2): 107–111. https://doi.org/10.5957/jsr.1996.40.2.107.
Maynord, S. T. 2000. “Power versus speed for shallow draft navigation.” J. Waterw. Port Coastal Ocean Eng. 126 (2): 103–106. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:2(103).
Maynord, S. T., and T. Siemsen. 1991. “Return velocities induced by shallow-draft navigation.” In Vol. 1 of Hydraulic Engineering, edited by R. M. Shane, 894–899. New York: ASCE.
Mucha, P., O. el Moctar, T. Dettmann, and M. Tenzer. 2018. “An experimental study on the effect of confined water on resistance and propulsion of an inland waterway ship.” Ocean Eng. 167: 11–22. https://doi.org/10.1016/j.oceaneng.2018.08.009.
Pompée, P.-J. 2015. “About modelling inland vessels resistance and propulsion and interaction vessel-waterway key parameters driving restricted/shallow water effects.” In Proc., 13th Int. PIANC-SMART Rivers Conf., 1–46. Belgium: PIANC.
Rigo, P., and V. Herbillon. 2010. Voies navigables et constructions hydrauliques. Liège, Belgium: Université de Liège, ANAST.
Römisch, K. 1968. Schiffswiderstand und Rauhigkeit der Flussohle. [In German.] Rep. No. FAS-467. Berlin: Forschungsanstalt für Schiffahrt Wasser- und Grundbau (FAS).
Rotteveel, E. 2013. “Investigation of inland ship resistance, propulsion and manoeuvring using literature study and potential flow calculations.” Master thesis, Marine & Transport Technology, TU Delft.
Rotteveel, E., R. Hekkenberg, and J. Liu. 2014. “Design guidelines and empirical evaluation tools for inland ships.” In European Inland Waterway Navigation Conf. Budapest, Hungary: Budapest University of Technology and Economics.
Schäle, E. 1962. Systematische Widerstands- und Propulsionsuntersuchungen an verschiedenen Schubbooten und Schubleichtern im Verband, sowie die Gegenüberstellung des Schleppleistungsbedarfs fünfzehn unterschiedlicher Schubformationen. Vol. 51 of Veröffentlichung der Versuchsanstalt für Binnenschiffbau e.V. Hamburg, Germany: Schroedter & Hauer.
Schijf, J. B. 1949. “Protection of embankments and Bed in inland and maritime waters, and in overflow or weirs.” In Section I C2 of Proc., 17th Int. Navigation Congress, 61–78. Belgium: PIANC.
Schneekluth, H., and V. Bertram. 1998. Ship design for efficiency and economy. 2nd ed. Oxford, UK: Butterworth-Heinemann.
Schoklitsch, A. 1962. Vol. 2 of Handbuch des Wasserbaues. [In German.] 3rd ed. Wien, Austria: Springer.
Schönknecht, R. 1968. “Vergleich einiger Verfahren zur Ermittlung von Höchstgeschwindigkeiten normaler Verdrängungsschiffe auf Wasserstraßen.” [In German.] Wiss. Z. Hochschule Verkehrswesen ‘Friedrich List’ Dresden 15 (1): 159–163.
Söhngen, B., J. Koop, S. Knight, J. Rythonen, P. Beckwith, N. Ferrari, J. Iribarren, T. Keevin, C. Wolter, and S. Maynord. 2008. Considerations to reduce environmental impacts of vessels. Rep. No. 99. Brussels, Belgium: PIANC.
Strickler, A. 1924. Fahrwiderstände von Schleppkähnen und Wirkungsgrade von Schraubenschleppern in der Binnenschiffahrt. [In German.] Mitteilungen des Amtes für Wasserwirtschaft 17. Bern, Switzerland: Amt für Wasserwirtschaft.
Sturtzel, W., and H. Heuser. 1960. “Widerstands- und Propulsionsmessungen für den Normalselbstfahrer Typ Gustav Koenigs.” [In German.] Forschungsber. des Landes Nordrhein-Westfalen 91: 868. Wiesbaden, Germany: VS Verlag für Sozialwissenschaften.
Van de Kaa, E. J. 1979. Power and speed of push-tows in canals. DHL Publication No. 216. Delft, Netherlands: Delft Hydraulics Laboratory.
Veldman, J. J., D. Bousmar, W. Kortlever, and M. A. C. Dam. 2018. “Simple but accurate calculation method for vessel speed in a minimum capacity lock.” In Proc., 34th PIANC World Congress, 649–668. Red Hook, NY: Curran Associates.
Viadonau. 2018. Sustainable, safe and economically feasible energy concepts and technologies for European Inland Shipping. PROMINENT D6.4 Final Pilot-Review Rep. Accessed June 8, 2019. https://www.rewway.at/files/d583df06162b45bda282310e0aae128d/.
Zibell, H. G., E. Müller, and H. Heuser. 1993. Bestimmung der Abhängigkeit des Formfaktors eines Einschrauben-Binnenschiffes von der Fahrwasserbreite – Kanaleffekt. [In German.] VBD-Rep. No. 1340. Duisburg, Germany: Development Centre for Ship Technology and Transport Systems (DST).
Zöllner, J. 1991. “Einfluß der Bug- und Heckform in Koppelverbänden aus schiebendem Gütermotorschiff und Leichter auf den Antriebsleistungsbedarf.” [In German.] Binnenschiffahrt-ZfB 118 (23): 1184–1186.
Zöllner, J. 2015. “Modernerer Binnenschiffbau zur Verbesserung der Propulsion und damit zur Reduzierung schiffsinduzierter Einflüsse.” [In German.] In BAW/UDE/DST-Kolloquium Wechselwirkung Schiff/Wasserstraße mit Auswirkungen auf Nautik und schiffsinduzierte Belastungen, 27–33. Karlsruhe, Germany: Bundesanstalt für Wasserbau (BAW).

Information & Authors

Information

Published In

Go to Journal of Waterway, Port, Coastal, and Ocean Engineering
Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume 147Issue 6November 2021

History

Received: Dec 3, 2020
Accepted: Jun 18, 2021
Published online: Aug 9, 2021
Published in print: Nov 1, 2021
Discussion open until: Jan 9, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Detlef Spitzer [email protected]
Dept. of Hydraulic Engineering in Inland Areas, Federal Waterways Engineering and Research Institute (BAW), 76187 Karlsruhe, Germany. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share