Technical Notes
Aug 20, 2020

Usage and Effect of Multiple Transient Tests for Pipeline Leak Detection

Publication: Journal of Water Resources Planning and Management
Volume 146, Issue 11

Abstract

The value of multiple transient tests under the same experimental conditions for the purpose of leakage detection is assessed. The gain in signal-to-noise ratio and leakage detection accuracy due to the multiple tests are derived theoretically and evaluated experimentally. The role of the multiple measurements in suppressing interferences and thus minimizing false detection is proven using experimental data. A theoretical extension of existing leakage detection method that was derived for single measurements is tested. From a practical perspective, this research quantitatively shows that the multitest strategy allows detecting smaller leaks in noisier environments, and/or using smaller-amplitude waves.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code generated or used during the study are available from the corresponding author by request.

Acknowledgments

This work has been supported by research grants from the Research Grant Council of the Hong Kong SAR, China (Project No. T21-602/15R and the Guangxi Natural Science Foundation (No. 2018GXNSFBA281013). The authors thank A. Keramat for his help with ITA; M. Louati for his comments; and A. Ahadpour Dodaran, K. N. Keya, M. Y. Lam, D. A. McInnis, and M. Waqar for their help with the experiments at HKUST.

References

Basse, N. T. 2019. “Turbulence intensity scaling: A fugue.” Fluids 4 (4): 180. https://doi.org/10.3390/fluids4040180.
Bradley, E. L. 1973. “The equivalence of maximum likelihood and weighted least squares estimates in the exponential family.” J. Am. Stat. Assoc. 68 (341): 199–200. https://doi.org/10.1080/01621459.1973.10481364.
Brunone, B. 1999. “Transient test-based technique for leak detection in outfall pipes.” J. Water Resour. Plann. Manage. 125 (5): 302–306. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:5(302).
Capon, J. 1969. “High-resolution frequency-wavenumber spectrum analysis.” Proc. IEEE 57 (8): 1408–1418. https://doi.org/10.1109/PROC.1969.7278.
Capponi, C., S. Meniconi, P. J. Lee, B. Brunone, and M. Cifrodelli. 2020. “Time-domain analysis of laboratory experiments on the transient pressure damping in a leaky polymeric pipe.” Water Resour. Manage. 34 (2): 501–514. https://doi.org/10.1007/s11269-019-02454-x.
Chaudhry, M. H. 2014. Applied hydraulic transients. 3rd ed. New York: Springer.
Colombo, A. F., P. Lee, and B. W. Karney. 2009. “A selective literature review of transient-based leak detection methods.” J. Hydro-environ. Res. 2 (4): 212–227. https://doi.org/10.1016/j.jher.2009.02.003.
Contractor, D. N. 1965. “The reflection of waterhammer pressure waves from minor losses.” J. Basic Eng. 87 (2): 445–451. https://doi.org/10.1115/1.3650568.
Covas, D., and H. Ramos. 2010. “Case studies of leak detection and location in water pipe systems by inverse transient analysis.” J. Water Resour. Plann. Manage. 136 (2): 248–257. https://doi.org/10.1061/(ASCE)0733-9496(2010)136:2(248).
Covas, D., I. Stoianov, D. Butler, C. Maksimovic, N. Graham, and H. Ramos. 2001. “Leakage detection in pipeline systems by inverse transient analysis—From theory to practice.” In Proc., 6th Int. Conf. on Computing and Control in the Water Industry (CCWI), edited by B. Ulanicki, B. Coulbeck, and J. P. Rance. Hertfordshire, UK: Research Studies Press.
Covas, D., I. Stoianov, J. F. Mano, H. Ramos, N. Graham, and C. Maksimovic. 2005. “The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part II: Model development, calibration and verification.” J. Hydraul. Res. 43 (1): 56–70. https://doi.org/10.1080/00221680509500111.
Covas, D., I. Stoianov, H. Ramos, N. Graham, and C. Maksimovic. 2004. “The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part I: Experimental analysis and creep characterization.” J. Hydraul. Res. 42 (5): 517–532. https://doi.org/10.1080/00221686.2004.9641221.
Daubechies, I. 1992. Ten lectures on wavelets. Philadelphia: Society for Industrial and Applied Mathematics.
Donoho, D. L. 1995. “De-noising by soft-tresholding.” IEEE Trans. Inf. Theory 41 (3): 613–627. https://doi.org/10.1109/18.382009.
Duan, H.-F., P. J. Lee, M. S. Ghidaoui, and Y.-K. Tung. 2010. “Essential system response information for transient-based leak detection methods.” J. Hydraul. Res. 48 (5): 650–657. https://doi.org/10.1080/00221686.2010.507014.
Duan, H.-F., P. J. Lee, M. S. Ghidaoui, and Y.-K. Tung. 2011a. “Leak detection in complex series pipelines by using the system frequency response method.” J. Hydraul. Res. 49 (2): 213–221. https://doi.org/10.1080/00221686.2011.553486.
Duan, H.-F., P. J. Lee, M. S. Ghidaoui, and Y.-K. Tung. 2011b. “System response function–based leak detection in viscoelastic pipelines.” J. Hydraul. Eng. 138 (2): 143–153. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000495.
Dubey, A., Z. Li, P. J. Lee, and R. Murch. 2019. “Measurement and characterization of acoustic noise in water pipeline channels.” IEEE Access 7: 56890–56903. https://doi.org/10.1109/ACCESS.2019.2914139.
Ferrante, M., B. Brunone, and S. Meniconi. 2007. “Wavelets for the analysis of transient pressure signals for leak detection.” J. Hydraul. Eng. 133 (11): 1274–1282. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:11(1274).
Gong, J., A. C. Zecchin, A. R. Simpson, and M. F. Lambert. 2013. “Frequency response diagram for pipeline leak detection: Comparing the odd and even harmonics.” J. Water Resour. Plann. Manage. 140 (1): 65–74. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000298.
Gupta, A., and K. D. Kulat. 2018. “A selective literature review on leak management techniques for water distribution system.” Water Resour. Manage. 32 (10): 3247–3269. https://doi.org/10.1007/s11269-018-1985-6.
Hassan, U., and M. S. Anwar. 2010. “Reducing noise by repetition: introduction to signal averaging.” Eur. J. Phys. 31 (3): 453. https://doi.org/10.1088/0143-0807/31/3/003.
Jolliffe, I. T. 2002. Principal component analysis. New York: Springer.
Kashima, A., P. J. Lee, M. S. Ghidaoui, and M. Davidson. 2013. “Experimental verification of the kinetic differential pressure method for flow measurements.” J. Hydraul. Res. 51 (6): 634–644. https://doi.org/10.1080/00221686.2013.818583.
Kashima, A., P. J. Lee, and R. Nokes. 2012. “Numerical errors in discharge measurements using the KDP method.” J. Hydraul. Res. 50 (1): 98–104. https://doi.org/10.1080/00221686.2011.638211.
Keramat, A., M. S. Ghidaoui, X. Wang, and M. Louati. 2019a. “Cramer-Rao lower bound for performance analysis of leak detection.” J. Hydraul. Eng. 145 (6): 04019018. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001603.
Keramat, A., A. S. Tijsseling, Q. Hou, and A. Ahmadi. 2012. “Fluid-structure interaction with pipe-wall viscoelasticity during water hammer.” J. Fluids Struct. 28 (Jan): 434–455. https://doi.org/10.1016/j.jfluidstructs.2011.11.001.
Keramat, A., X. Wang, M. Louati, S. Meniconi, B. Brunone, and M. S. Ghidaoui. 2019b. “Objective functions for inverse transient analysis based pipeline leakage detection: Least square and matched-filter.” J. Water Resour. Plann. Manage. 145 (10): 04019042. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001108.
Lagunas, M. A., M. E. Santamaria, A. Gasull, and A. Moreno. 1986. “Maximum likelihood filters in spectral estimation problems.” Signal Process. 10 (1): 19–34. https://doi.org/10.1016/0165-1684(86)90062-9.
Lam, M. Y., D. Corredor, G. A. Camino, and M. S. Ghidaoui. 2019. “Background pressure characterization in pipe systems and the Rayleigh distribution.” In Proc., 38th IAHR World Congress. Beijing: International Association for Hydro-Environment Engineering and Research.
Lee, P. J. 2005. “Using system response functions of liquid pipelines for leak and blockage detection.” Ph.D. thesis, School of Civil and Environmental Engineering, Univ. of Adelaide.
Lee, P. J., M. F. Lambert, A. R. Simpson, J. P. Vítkovskỳ, and J. Liggett. 2006. “Experimental verification of the frequency response method for pipeline leak detection.” J. Hydraul. Res. 44 (5): 693–707. https://doi.org/10.1080/00221686.2006.9521718.
Lee, P. J., J. P. Vítkovskỳ, M. F. Lambert, A. R. Simpson, and J. A. Liggett. 2005a. “Frequency domain analysis for detecting pipeline leaks.” J. Hydraul. Eng. 131 (7): 596–604. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:7(596).
Lee, P. J., J. P. Vítkovskỳ, M. F. Lambert, A. R. Simpson, and J. A. Liggett. 2005b. “Leak location using the pattern of the frequency response diagram in pipelines: A numerical study.” J. Sound Vib. 284 (3): 1051–1073. https://doi.org/10.1016/j.jsv.2004.07.023.
Liggett, J. A., and L.-C. Chen. 1994. “Inverse transient analysis in pipe networks.” J. Hydraul. Eng. 120 (8): 934–955. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:8(934).
Lin, J., X. Wang, and M. S. Ghidaoui. 2019. “Theoretical investigation of leak’s impact on normal modes of a water-filled pipe: Small to large leak impedance.” J. Hydraul. Eng. 145 (6): 04019017. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001606.
Liou, J. C. 1998. “Pipeline leak detection by impulse response extraction.” J. Fluids Eng. 120 (4): 833–838. https://doi.org/10.1115/1.2820746.
McKeon, B. J., M. V. Zagarola, and A. J. Smits. 2005. “A new friction factor relationship for fully developed pipe flow.” J. Fluid Mech. 538: 429–443. https://doi.org/10.1017/S0022112005005501.
Meniconi, S., B. Brunone, M. Ferrante, C. Capponi, C. A. Carrettini, C. Chiesa, D. Segalini, and E. A. Lanfranchi. 2015. “Anomaly pre-localization in distribution–transmission mains by pump trip: preliminary field tests in the Milan pipe system.” J. Hydroinf. 17 (3): 377–389. https://doi.org/10.2166/hydro.2014.038.
Meniconi, S., B. Brunone, M. Ferrante, and C. Massari. 2010. “Potential of transient tests to diagnose real supply pipe systems: What can be done with a single extemporary test.” J. Water Resour. Plann. Manage. 137 (2): 238–241. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000098.
Meniconi, S., H. F. Duan, P. J. Lee, B. Brunone, M. S. Ghidaoui, and M. Ferrante. 2013. “Experimental investigation of coupled frequency and time-domain transient test–based techniques for partial blockage detection in pipelines.” J. Hydraul. Eng. 139 (10): 1033–1040. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000768.
Mpesha, W., S. L. Gassman, and M. H. Chaudhry. 2001. “Leak detection in pipes by frequency response method.” J. Hydraul. Eng. 127 (2): 134–147. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:2(134).
Murakawa, H., K. Sugimoto, and N. Takenaka. 2014. “Effects of the number of pulse repetitions and noise on the velocity data from the ultrasonic pulsed doppler method with different algorithms.” Flow Meas. Instrum. 40 (Dec): 9–18. https://doi.org/10.1016/j.flowmeasinst.2014.08.009.
Nguyen, S. T. N., J. Gong, M. F. Lambert, A. C. Zecchin, and A. R. Simpson. 2018. “Least squares deconvolution for leak detection with a pseudo random binary sequence excitation.” Mech. Syst. Sig. Process. 99 (Jan): 846–858. https://doi.org/10.1016/j.ymssp.2017.07.003.
Nixon, W., and M. S. Ghidaoui. 2007. “Numerical sensitivity study of unsteady friction in simple systems with external flows.” J. Hydraul. Eng. 133 (7): 736–749. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:7(736).
Pezzinga, G., and P. Scandura. 1995. “Unsteady flow in installations with polymeric additional pipe.” J. Hydraul. Eng. 121 (11): 802–811. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:11(802).
Rubio Scola, I., G. Besançon, and D. Georges. 2016. “Blockage and leak detection and location in pipelines using frequency response optimization.” J. Hydraul. Eng. 143 (1): 04016074. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001222.
Schmitt, C., G. Pluvinage, E. Hadj-Taieb, and R. Akid. 2006. “Water pipeline failure due to water hammer effects.” Fatigue Fract. Eng. Mater. Struct. 29 (12): 1075–1082. https://doi.org/10.1111/j.1460-2695.2006.01071.x.
Soares, A. K., D. I. Covas, and L. F. R. Reis. 2011. “Leak detection by inverse transient analysis in an experimental PVC pipe system.” J. Hydroinf. 13 (2): 153–166. https://doi.org/10.2166/hydro.2010.012.
Stephens, M. L., M. F. Lambert, A. R. Simpson, and J. P. Vitkovsky. 2011. “Calibrating the water-hammer response of a field pipe network by using a mechanical damping model.” J. Hydraul. Eng. 137 (10): 1225–1237. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000413.
Sun, Y., P. Babu, and D. P. Palomar. 2016. “Robust estimation of structured covariance matrix for heavy-tailed elliptical distributions.” IEEE Trans. Signal Process. 64 (14): 3576–3590. https://doi.org/10.1109/TSP.2016.2546222.
Tang, K., B. Karney, M. Pendlebury, and F. Zhang. 1999. “Inverse transient calibration of water distribution systems using genetic algorithms.” In Vol. 1 of Proc., Water Industry Systems: Modelling and Optimization Applications. Hertfordshire, England: Research Studies Press.
Tang, K. W., B. W. Karney, and B. Brunone. 2001. “Leak detection using inverse transient calibration and GA-some early success and future challenges.” In Proc., 6th Int. Conf. on Computing and Control in the Water Industry (CCWI). Exeter, England: Univ. of Exeter.
Vítkovskỳ, J. P., M. F. Lambert, A. R. Simpson, and J. A. Liggett. 2007. “Experimental observation and analysis of inverse transients for pipeline leak detection.” J. Water Resour. Plann. Manage. 133 (6): 519–530. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000298.
Vítkovskỳ, J. P., J. A. Liggett, A. R. Simpson, and M. F. Lambert. 2003. “Optimal measurement site locations for inverse transient analysis in pipe networks.” J. Water Resour. Plann. Manage. 129 (6): 480–492. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:6(480).
Vítkovskỳ, J. P., A. R. Simpson, and M. F. Lambert. 2000. “Leak detection and calibration using transients and genetic algorithms.” J. Water Resour. Plann. Manage. 126 (4): 262–265. https://doi.org/10.1061/(ASCE)0733-9496(2000)126:4(262).
Wang, X., and M. S. Ghidaoui. 2018a. “Identification of multiple leaks in pipeline: Linearized model, maximum likelihood, and super-resolution localization.” Mech. Syst. Sig. Process. 107 (Jul): 529–548. https://doi.org/10.1016/j.ymssp.2018.01.042.
Wang, X., and M. S. Ghidaoui. 2018b. “Pipeline leak detection using the matched-field processing method.” J. Hydraul. Eng. 144 (6): 04018030. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001476.
Wang, X., and M. S. Ghidaoui. 2019. “Identification of multiple leaks in pipeline II: Iterative beamforming and leak number estimation.” Mech. Syst. Sig. Process. 119 (Mar): 346–362. https://doi.org/10.1016/j.ymssp.2018.09.020.
Wang, X., M. S. Ghidaoui, and J. Lin. 2019a. “Identification of multiple leaks in pipeline III: Experimental results.” Mech. Syst. Sig. Process. 130 (Sep): 395–408. https://doi.org/10.1016/j.ymssp.2019.05.015.
Wang, X., J. Lin, M. S. Ghidaoui, S. Meniconi, and B. Brunone. 2020a. “Estimating viscoelasticity of pipes with unknown leaks.” Mech. Syst. Sig. Process. 143 (Sep): 106821. https://doi.org/10.1016/j.ymssp.2020.106821.
Wang, X., M. S. Ghidaoui, and P. J. Lee. 2020b. “Linear model and regularization for transient wave–based pipeline-condition assessment.” J. Water Resour. Plann. Manage. 146 (5): 04020028. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001205.
Wang, X., J. Lin, A. Keramat, M. S. Ghidaoui, S. Meniconi, and B. Brunone. 2019b. “Matched-field processing for leak localization in a viscoelastic pipe: An experimental study.” Mech. Syst. Sig. Process. 124 (Jun): 459–478. https://doi.org/10.1016/j.ymssp.2019.02.004.
Wang, X., D. P. Palomar, L. Zhao, M. S. Ghidaoui, and R. D. Murch. 2019c. “Spectral-based methods for pipeline leakage localization.” J. Hydraul. Eng. 145 (3): 04018089. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001572.
Wang, X., M. Waqar, H.-C. Yan, M. Louati, M. S. Ghidaoui, P. J. Lee, S. Meniconi, B. Brunone, and B. Karney. 2020c. “Pipeline leak localization using matched-field processing incorporating prior information of modeling error.” Mech. Syst. Signal Process. 143 (Sep): 106849. https://doi.org/10.1016/j.ymssp.2020.106849.
Wang, X.-J., M. F. Lambert, A. R. Simpson, J. A. Liggett, and J. P. Vítkovskỳ. 2002. “Leak detection in pipelines using the damping of fluid transients.” J. Hydraul. Eng. 128 (7): 697–711. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:7(697).
Zhou, B., A. Liu, X. Wang, Y. She, and V. Lau. 2018. “Compressive sensing-based multiple-leak identification for smart water supply systems.” IEEE Internet Things J. 5 (2): 1228–1241. https://doi.org/10.1109/JIOT.2018.2812163.

Information & Authors

Information

Published In

Go to Journal of Water Resources Planning and Management
Journal of Water Resources Planning and Management
Volume 146Issue 11November 2020

History

Received: Oct 1, 2019
Accepted: May 22, 2020
Published online: Aug 20, 2020
Published in print: Nov 1, 2020
Discussion open until: Jan 20, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, Key Laboratory of Reliability and Environmental Engineering Technology, School of Reliability and Systems Engineering, Beihang Univ., Xueyuan Rd. No. 37, Haidian, Beijing 100083, China; formerly, Research Associate, Dept. of Civil and Environmental Engineering, Hong Kong Univ. of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China (corresponding author). ORCID: https://orcid.org/0000-0002-1156-3840. Email: [email protected]; [email protected]
Jingrong Lin
Ph.D. Student, Dept. of Earth, Ocean and Atmospheric Sciences, Univ. of British Columbia, Vancouver, BC, Canada V6T 1Z4; formerly, M.Phil Student and Research Assistant, Dept. of Civil and Environmental Engineering, Hong Kong Univ. of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China.
Mohamed S. Ghidaoui, M.ASCE
Chinese Estates Professor of Engineering and Chair Professor, Dept. of Civil and Environmental Engineering, Hong Kong Univ. of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share