Technical Papers
Dec 26, 2018

Economic–Engineering Method for Assessing Trade-Offs between Instream and Offstream Uses

Publication: Journal of Water Resources Planning and Management
Volume 145, Issue 3

Abstract

Rivers provide multiple water uses and services, including offstream uses that are valued economically and instream uses, such as recreation and ecosystem preservation, that are rarely valued economically. In many countries, water rights allocate water to offstream uses, and dedicated minimum instream flows are the main instrument for instream water allocation. However, minimum instream flows do not ensure continuous reaches for recreation or aquatic habitats. An efficient allocation of water for instream uses requires quantifying the benefits obtained from those uses, so that trade-offs between instream and offstream water uses can be weighed against each other and properly considered. This study develops a generalizable, hybrid economic–engineering method to assess trade-offs between competing instream and offstream uses. Benefit curves measure recreation quality as a function of instream flow, and opportunity costs given by lost benefits of offstream uses generate supply curves for instream water. The method is applied to Chile’s Maipo River. Instream water uses for recreation include kayaking and rafting. The principal offstream water use in the study reach is hydropower generation from the Alto Maipo Hydroelectric Project. Continuous length of boatable reaches and trade-offs between instream and offstream water uses are evaluated for normal and dry months and years. Results show that the opportunity cost of additional boatable reaches is sensitive to both drought and energy price. The cost of maintaining 34 km rather than 26.6 km of continuous boatable river is US$10 million in dry years when energy prices are high, and US$240,000 in normal years when energy prices are low. Results indicate that dry months and years, when water is scarce, have a greater number of optimal solutions between instream and offstream water uses. This is explained by the physical relationship between instream flow and continuous boatable distance for low flow values. The proposed approach could guide negotiation processes between instream and offstream water users, and can be applied elsewhere, provided a physically based assessment of instream water use benefit and an economic representation of offstream opportunity costs is available.

Get full access to this article

View all available purchase options and get full access to this article.

References

AES Gener. 2008. “Actualización estudio de caudal ecológico proyecto hidroeléctrico hlto maipo (PHAM).” Accessed April 10, 2016. https://www.e-seia.cl/archivos/20081112.181332.rar.
AES Gener. 2012. “Seguimiento ambiental de proyecto hidroeléctrico alto maipo. Programa de monitoreo de indicadores sociales.” Accessed April 12, 2016. http://www.altomaipo.com/Descargas/Documents/e577288406a39d694a58990da1f b91f1.pdf.
AES Gener. 2013. “Informe técnico del caudal ecológico del proyecto hidroeléctrico alto maipo.” Accessed April 12, 2016. https://ewsdata.rightsindevelopment.org/files/documents/67/IADB-CHL1067_ 0FA8iVI.pdf.
Aquaterra Ingenieros Limitada. 2010. “Análisis de metodología y determinación de caudales de reserva turísticos. For Gobierno de Chile, Ministerio de obras públicas.” Accessed March 30, 2016. http://documentos.dga.cl/ADM5269v1.pdf.
Baranao, P., and M. Prácticas. 2014. “Cumulative impact assessment—Alto maipo hydropower.” In Proc., 34th Annual Conf. of the Int. Association for Impact Assessment Conf. Fargo, ND: International Association for Impact Assessment.
Bauer, C. J. 2004. “Results of Chilean water markets: Empirical research since 1990.” Water Resour. Res. 40 (9): 1–15. https://doi.org/10.1029/2003WR002838.
Bauer, C. J. 2016. The evolving water market in Chile’s Maipo River Basin: A case study for the political economy of water markets project. A report for the Rockefeller Foundation. Accessed December 10, 2017. https://static1.squarespace.com/static/56d1e36d59827e6585c0b336/t/5805460515d5dbb1ab599b91/1476740618944/Chile-Maipo-Bauer.pdf.
Birol, E., K. Karousakis, and P. Koundouri. 2006. “Using economic valuation techniques to inform water resources management: A survey and critical appraisal of available techniques and an application.” Sci. Total Environ. 365 (1): 105–122. https://doi.org/10.1016/j.scitotenv.2006.02.032.
Booker, J. F., R. E. Howitt, A. M. Michelsen, and R. A. Young. 2012. “Economics and the modeling of water resources and policies.” Natural Resour. Modell. 25 (1): 168–218. https://doi.org/10.1111/j.1939-7445.2011.00105.x.
Cai, X., D. C. McKinney, and L. S. Lasdon. 2003. “Integrated hydrologic-agronomic-economic model for river basin management.” J. Water Resour. Plann. Manage. 129 (1): 4–17. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:1(4).
Cai, X., C. Ringler, and M. W. Rosegrant. 2006. Modeling water resources management at the basin level: Methodology and application to the Maipo River Basin. Washington, DC: International Food Policy Research Institute.
Cardwell, H., H. I. Jager, and M. J. Sale. 1996. “Designing instream flows to satisfy fish and human water needs.” J. Water Resour. Plann. Manage. 122 (5): 356–363. https://doi.org/10.1061/(ASCE)0733-9496(1996)122:5(356).
Carlisle, D. M., D. M. Wolock, and M. R. Meador. 2011. “Alteration of streamflow magnitudes and potential ecological consequences: A multiregional assessment.” Front. Ecol. Environ. 9 (5): 264–270. https://doi.org/10.1890/100053.
Carolli, M., G. Zolezzi, D. Geneletti, A. Siviglia, F. Carolli, and O. Cainelli. 2017. “Modelling white-water rafting suitability in a hydropower regulated Alpine River.” Sci. Total Environ. 579: 1035–1049. https://doi.org/10.1016/j.scitotenv.2016.11.049.
Chávez-Jiménez, A., and D. González-Zeas. 2015. “El impacto de los caudales medioambientales en la satisfacción de la demanda de agua bajo escenarios de cambio climático.” RIBAGUA-Revista Iberoamericana del Agua 2 (1): 3–13. https://doi.org/10.1016/j.riba.2015.04.001.
Cohon, J. L. 2004. Multiobjective programming and planning. Mineola, NY: Dover Publications.
Colby, B. G. 1990. “Enhancing instream flow benefits in an era of water marketing.” Water Resour. Res. 26 (6): 1113–1120. https://doi.org/10.1029/WR026i006p01113.
Daubert, J. T., and R. A. Young. 1981. “Recreational demands for maintaining instream flows: A contingent valuation approach.” Am. J. Agric. Econ. 63 (4): 666–676. https://doi.org/10.2307/1241209.
De Vincenzo, A., and B. Molino. 2013. “The rehabilitation of a reservoir: A new methodological approach for calculating the sustainable useful storage capacity.” Agric. Sci. 4 (08): 46. https://doi.org/10.4236/as.2013.48A007.
Draper, A. J., M. W. Jenkins, K. W. Kirby, J. R. Lund, and R. E. Howitt. 2003. “Economic-engineering optimization for California water management.” J. Water Resour. Plann. Manage. 129 (3): 155–164. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(155).
Gobierno de Chile. 2016. “Guia metodológica para determinar el caudal ambiental para centrales hidroeléctricas en el Seia.” Accessed March 5, 2018. http://www.sea.gob.cl/sites/default/files/imce/archivos/2016/08/guia_caudal_ambiental_0.pdf.
Haas, J., M. Olivares, R. Palma, and A. Quintero. 2013. “Efectos económicos de la modelación de los estanques de regulación de hidroeléctricas de pasada en el predespacho del SIC (Economic effects of modeling regulation tanks of run-of-river hydropower plants in Chile’s unit commitment).” In Chilean Congress of Hydraulic Engineering. Santiago, Chile: Chilean Society of Hydraulic Engineering.
Harou, J. J., M. Pulido-Velazquez, D. E. Rosenberg, J. Medellín-Azuara, J. R. Lund, and R. E. Howitt. 2009. “Hydro-economic models: Concepts, design, applications, and future prospects.” J. Hydrol. 375 (3–4): 627–643. https://doi.org/10.1016/j.jhydrol.2009.06.037.
Homa, E. S., R. M. Vogel, M. P. Smith, C. D. Apse, A. Huber-Lee, and J. Sieber. 2005. “An optimization approach for balancing human and ecological flow needs.” In Proc., World Water and Environmental Resources Congress 2005, 1–12. Anchorage, AK: Environmental and Water Resources Institute of ASCE.
Hyra, R. 1978. Methods of assessing instream flows for recreation. Fort Collins, CO: United States Fish and Wildlife Service.
International Rafting Federation. 2015. “Top 10 most threatened rivers.” Accessed November 5, 2018. http://www.internationalrafting.com/conservation/top-10-most-threathened-rivers/.
Jager, H. I., and B. T. Smith. 2008. “Sustainable reservoir operation: Can we generate hydropower and preserve ecosystem values?” River Res. Appl. 24 (3): 340–352. https://doi.org/10.1002/rra.1069.
Jenkins, M. W., J. R. Lund, and R. E. Howitt. 2003. “Using economic loss functions to value urban water scarcity in California.” J. Am. Water Works Assoc. 95 (2): 58–70. https://doi.org/10.1002/j.1551-8833.2003.tb10292.x.
Jorda-Capdevila, D., and B. Rodríguez-Labajos. 2017. “Socioeconomic value(s) of restoring environmental flows: Systematic review and guidance for assessment.” River Res. Appl. 33 (3): 305–320. https://doi.org/10.1002/rra.3074.
Jowett, I. G. 1997. “Instream flow methods: A comparison of approaches.” Regulated Rivers Res. Manage. 13 (2): 115–127. https://doi.org/10.1002/(SICI)1099-1646(199703)13:2%3C115::AID-RRR440%3E3.0.CO;2-6.
Kayak River Stewards of Chile. 2018. “Rio Maipo.” Accessed March 3, 2018. http://www.kayakstewards.org/maipo.html.
King, J. M., R. E. Tharme, and M. S. De Villiers. 2000. Environmental flow assessments for rivers: Manual for the building block methodology, 340. Pretoria, South Africa: Water Research Commission.
Kraft, M., D. E. Rosenberg, S. E. Null. Forthcoming “Optimizing barrier removal to prioritize connected aquatic habitat and water reliability.” J. Am. Water Resour. Assoc.
Ligare, S. T., J. H. Viers, S. E. Null, D. E. Rheinheimer, and J. F. Mount. 2012. “Non-uniform changes to whitewater recreation in California’s Sierra Nevada from regional climate warming.” River Res. Appl. 28 (8): 1299–1311. https://doi.org/10.1002/rra.1522.
Loomis, J., P. Kent, L. Strange, K. Fausch, and A. Covich. 2000. “Measuring the total economic value of restoring ecosystem services in an impaired river basin: Results from a contingent valuation survey.” Ecol. Econ. 33 (1): 103–117. https://doi.org/10.1016/S0921-8009(99)00131-7.
Loomis, J. B. 1998. “Estimating the public’s values for instream flow: Economic techniques and dollar values.” J. Am. Water Resour. Assoc. 34 (5): 1007–1014. https://doi.org/10.1111/j.1752-1688.1998.tb04149.x.
Martin, D. M., J. W. Labadie, and N. L. Poff. 2015. “Incorporating social preferences into the ecological limits of hydrologic alteration (ELOHA): A case study in the Yampa-White River basin, Colorado.” Freshwater Boil. 60 (9): 1890–1900. https://doi.org/10.1111/fwb.12619.
McCluney, K. E., N. L. Poff, M. A. Palmer, J. H. Thorp, G. C. Poole, B. S. Williams, M. R. Williams, and J. S. Baron. 2014. “Riverine macrosystems ecology: Sensitivity, resistance, and resilience of whole river basins with human alterations.” Front. Ecol. Environ. 12 (1): 48–58. https://doi.org/10.1890/120367.
Medellín-Azuara, J., J. R. Lund, and R. E. Howitt. 2007. “Water supply analysis for restoring the Colorado River Delta, Mexico.” J. Water Resour. Plann. Manage. 133 (5): 462–471. https://doi.org/10.1061/(ASCE)0733-9496(2007)133:5(462).
Mims, M. C., and J. D. Olden. 2013. “Fish assemblages respond to altered flow regimes via ecological filtering of life history strategies.” Freshwater Biol. 58 (1): 50–62. https://doi.org/10.1111/fwb.12037.
Mosley, M. P. 1983. “Flow requirements for recreation and wildlife in New Zealand rivers—A review.” J. Hydrol. 22 (2): 152–174.
Null, S. E., and J. R. Lund. 2012. “Fish habitat optimization to prioritize river restoration decisions.” River Res. Appl. 28 (9): 1378–1393. https://doi.org/10.1002/rra.1521.
Null, S. E., and L. Prudencio. 2016. “Climate change effects on water allocations with season dependent water rights.” Sci. Total Environ. 571: 943–954. https://doi.org/10.1016/j.scitotenv.2016.07.081.
Null, S. E., and J. H. Viers. 2013. “In bad waters: Water year classification in nonstationary climates.” Water Resour. Res. 49 (2): 1137–1148. https://doi.org/10.1002/wrcr.20097.
Ocampo-Melgar, A., S. Vicuña, J. Gironás, R. G. Varady, and C. A. Scott. 2016. “Scientists, policymakers, and stakeholders plan for climate change: A promising approach in Chile’s Maipo Basin.” Environ. Sci. Policy Sustainable Dev. 58 (5): 24–37. https://doi.org/10.1080/00139157.2016.1209004.
Olivares, M. A., and J. R. Lund. 2012. “Representing energy price variability in long- and medium-term hydropower optimization.” J. Water Resour. Plann. Manage. 138 (6): 606–613. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000214.
Pareto, V. 1896. Manual of Political Economy: A critical and variorum edition, edited by A. Montesano, A. Zanni, L. Bruni, J. S. Chipman, and M. McLue. Oxford, UK: Oxford University Press.
Poff, N. L., et al. 2010. “The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards.” Freshwater Biol. 55 (1): 147–170. https://doi.org/10.1111/j.1365-2427.2009.02204.x.
Rheinheimer, D. E., S. E. Null, and J. H. Viers. 2016. “Climate-adaptive water year typing for instream flow requirements in California’s Sierra Nevada.” J. Water Resour. Plann. Manage. 142 (11): 04016049. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000693.
Richter, B. D., J. V. Baumgartner, J. Powell, and D. P. Braun. 1996. “A method for assessing hydrologic alteration within ecosystems.” Conserv. Biol. 10 (4): 1163–1174. https://doi.org/10.1046/j.1523-1739.1996.10041163.x.
Rosegrant, M. W., C. Ringler, D. C. McKinney, X. Cai, A. Keller, and G. Donoso. 2000. “Integrated economic-hydrologic water modeling at the basin scale: The Maipo River basin.” Agric. Econ. 24 (1): 33–46. https://doi.org/10.1111/j.1574-0862.2000.tb00091.x.
Sale, M. J., E. D. Brill, and E. E. Herricks. 1982. “An approach to optimizing reservoir operation for downstream aquatic resources.” Water Resour. Res. 18 (4): 705–712. https://doi.org/10.1029/WR018i004p00705.
SEIA (Sistema de Evaluación de Impacto Ambiental). 2008. Estudio de Impacto Ambiental Proyecto Hidroeléctrico Alto Maipo. Anexo 10 Caudal Ecológico y Análisis de los Requerimientos Ambientales. Accessed March 30, 2016. http://seia.sea.gob.cl/archivos/20080528.195355.pdf.
Shelby, B., T. C. Brown, and J. G. Taylor. 1992. Streamflow and recreation. Washington, DC: US Dept. of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station.
Stafford, E., N. Fey, and J. J. Vaske. 2017. “Quantifying whitewater recreation opportunities in Cataract Canyon of the Colorado River, Utah: Aggregating acceptable flows and hydrologic data to identify boatable days.” River Res. Appl. 33 (1): 162–169. https://doi.org/10.1002/rra.3049.
Steinschneider, S., A. Bernstein, R. Palmer, and A. Polebitski. 2014. “Reservoir management optimization for basin-wide ecological restoration in the Connecticut River.” J. Water Resour. Plann. Manage. 140 (9): 04014023. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000399.
USACH (Universidad de Santiago de Chile). 2016. Manual de curvas de preferencia para la realización de actividades recreativas. Technical Rep. Proyecto Incorporación de la variabilidad hidrológica en la determinación del caudal ecológico (12BPC2-13421), CORFO. Santiago, Chile: USACH.
Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell, and C. E. Cushing. 1980. “The river continuum concept.” Can. J. Fish. Aquat. Sci. 37 (1): 130–137. https://doi.org/10.1139/f80-017.
Vicuña, S., M. Gil, O. Melo, G. Donoso, and P. Merino. 2018. “Water option contracts for climate change adaptation in Santiago, Chile.” Water Int. 43 (2): 237–256. https://doi.org/10.1080/02508060.2017.1416444.
Ward, F. A. 1987. “Economics of water allocation to instream uses in a fully appropriated river basin: Evidence from a New Mexico wild river.” Water Resour. Res. 23 (3): 381–392. https://doi.org/10.1029/WR023i003p00381.
Whittaker, D., and B. Shelby. 2002. “Evaluating instream flows for recreation: Applying the structural norm approach to biophysical conditions.” Leisure Sci. 24 (3–4): 363–374. https://doi.org/10.1080/01490400290050808.
Yin, X. A., and Z. F. Yang. 2011. “Development of a coupled reservoir operation and water diversion model: Balancing human and environmental flow requirements.” Ecol. Modell. 222 (2): 224–231. https://doi.org/10.1016/j.ecolmodel.2010.06.025.
Young, R. A. 2005. Determining the economic value of water: Concepts and methods. Washington, DC: Resources for the Future.
Young, R. A., and J. B. Loomis. 2014. Determining the economic value of water: Concepts and methods. Abingdon, UK: Routledge.

Information & Authors

Information

Published In

Go to Journal of Water Resources Planning and Management
Journal of Water Resources Planning and Management
Volume 145Issue 3March 2019

History

Received: Jan 17, 2018
Accepted: Jul 24, 2018
Published online: Dec 26, 2018
Published in print: Mar 1, 2019
Discussion open until: May 26, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Paulina Génova
Research Assistant, Dept. of Civil Engineering, Universidad de Chile, Blanco Encalada 2002, piso 3, Santiago 8370449, Chile.
Sarah E. Null
Associate Professor, Dept. of Watershed Sciences, Utah State Univ., Logan, UT 84322-5210.
Assistant Professor, Dept. of Civil Engineering, Universidad de Chile, Blanco Encalada 2002, piso 3, Santiago 8370449, Chile; Associate Researcher, Energy Center, Universidad de Chile, Tupper 2007, piso 4, Santiago 8370449, Chile (corresponding author). ORCID: https://orcid.org/0000-0003-4443-9261. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share